Electromechanical Group

Electromechanical is the technology of controlling mechanical devices via electricity. Parker electromechanical systems and components improve precision and increase productivity.
Electromechanical Knowledge Base
Group - List
Latest Electromechanical and Drives Blog Posts

DynamometerThe automotive vehicle industry has experienced introductions of several new technologies and upgrades. One significant example is the rising amount of electrical content per vehicle. Testing for vehicle and engine performance is essential in the wake of additions and conversions from each of the new technologies. 

Concurrently, OEM manufacturers are facing a number of cost pressures that are fueling the dynamometer market, from both regulatory and the consumer base, leading to higher investments in R&D and testing. 

The major drivers for dynamometers use for in-plant automotive facilities are test stands with enhanced accuracy, increasing demand for vehicle quality standards and increasing awareness toward quality in new markets. The challenge faced is how to get the price down on vehicles when all other costs are increasing.

Industry trends driving use?

Increasing electric and hybrid vehicle production will require more specialized testing stands:

  • Automotive plants are looking at purchasing new test stands to support the production of electric and hybrid vehicles.

  • Drive/control equipment on existing test stands may go obsolete, so parts and service will be hard to come by.

  • Production costs will rise with energy prices if existing equipment is not replaced with a more energy efficient solution.

Test Stand with Parker Drive SystemThe growing need for modernizing dynamometers

Automotive or truck manufacturers or makers of components or sub-systems that go into a new vehicle already have test stands and dynamometer equipment that may be outdated and in need of drive/control retrofit. These customers who already have older test stands suffer from down time, trouble obtaining parts and excessive energy consumption. 

OEMs looking to purchase test stands may want specialized features in the drive/control system and not every supplier can offer that. Or, they may be looking to purchase a new test stand or dynamometer and may want to specify certain equipment in addition. Our engineers will work with the test stand manufacturer on a special design as needed. 


The background

A dynamometer is a necessity in automotive vehicle testing equipment used by OEMs, component suppliers and automotive testing service providers for recording several parameters such as force, torque, power and speed of the vehicle.

The use of this testing equipment is essential throughout the production cycle of an automobile, making it a necessary component of all vehicle assembly lines. This testing equipment is also used in vehicle engine manufacturing factories and dynamometer laboratories or the automotive testing service facilities to evaluate vehicle and engine performance.

Test stands and dynamometers cover a wide range of applications, but are most commonly used to test manufactured items for adherence to specification while simulating real-world operating conditions. While “test stand” is a more general term defining a machine that could test nearly any item including pumps, automotive components or electrical components, a “dynamometer” is used to measure torque or power and is more closely associated with motor or motor vehicle testing.


Application examples

A drive system is used in these applications to either provide motive force or absorb it, depending upon the type of test stand:

  1. A pump test stand requiring a motor to spin the pump and a drive/control system to regulate the speed and torque delivered to said pump.

  2. A dynamometer used to test an electric motor would require a second motor that would effectively act as a braking device to load the motor under test.The drive and control system would be required to absorb this energy while regulating the speed and torque during the test.

A third example would be a test stand designed to test rechargeable batteries. Here, no motive force is involved, but the test gear would charge and discharge the batteries in a controlled manner, allowing the batteries’ functionality to be evaluated.


Save energy!

Many test cell designs are energy wasters. Older technologies like water brakes, fan brakes or eddy current devices, for example, convert kinetic energy from the testing process to heat. Replacing these methods with a regenerative drive system can allow this wasted energy to be recaptured and returned to the power grid. In addition to reducing your carbon footprint, a solid-state drive system will quickly pay for itself in power bill savings. Energy saving features exist even within the drive system, like smart ventilation in the AC890PX series that senses internal temperature and adjusts fan speed to save energy when the unit is lightly loaded, or in cooler ambient temperatures.


Parker Dynamometer Drive SystemGreen, clean, controlled power

Parker regenerative drives can harvest energy from the testing process and return it to the power grid, providing a substantial net reduction in a plant’s electric use. Older dynamometers that are widely in use simply burn off the excess power and dissipate it as heat, which is wasteful of resources. In the grand scheme of things, our engineering expertise in special equipment for electric and hybrid vehicle manufacturers contributes to these vehicles being efficiently manufactured and sold, resulting in less polluting gas and diesel-powered vehicles on the road.  


Parker can provide a drive/control retrofit that will allow you to keep your existing mechanical equipment and enjoy more efficient operation. And, in many cases, better performance, and have the knowledge that the drive/control system is up to date and serviceable.  

For example, if you have an existing test cell using DC motors as prime movers or absorbers, and do not wish to upgrade to AC technology, the DC590+ digital DC series is a flexible and economical solution for test rigs through 2000 HP. Replace your obsolete SCR units with the latest in digital DC to eliminate costly repairs and downtime, with the added benefit of IoT capabilities.


For OEMs of vehicle test stands who are looking to expand into new markets of electric and hybrid vehicle manufacturing, Parker can provide custom or specialized drive and control systems that meet the unique testing needs of these vehicles. For those competing in the more traditional markets, Parker draws from over 30 years of experience in drives and controls to provide systems that are compact, easy to maintain, and energy efficient. 

Have a dynamometer application or just want to learn more? Download our Test Stands and Dynamometers Solutions brochure.


Lou Lambruschi, Marketign Services Manager, Parker HannifinArticle provided by Lou Lambruschi, marketing services manager for Parker's Electromechanical and Drives Division.








Related, helpful content for you:

Series Hybrid Vehicle Electrical Systems

Series Hybrid Vehicle System Design

5 Reasons to Control your Compressor with a Variable Frequency Drive

Advantageous Series Hybrid Technology Applications

A Simple Guide to Benefits of Electromechanical Technology

Meeting Demand for Efficient Automotive Vehicle Testing & Dynamometers

Read More

The 4 key performance characteristics to help specify the right linear drive train + engineer + Parker Hannifin Electromechanical and Drives DivisionWhen it comes to linear actuators, selecting the right drive technology can be a precise balancing act as there is no ‘one size fits all’ solution.

Due to the breadth of applications – from automated packaging lines and pick-and-place operations to complex machines such as 3D printers – making the correct choice is less about concentrating on a single aspect than finding the optimum balance of performance from a variety of different factors.

Most electromechanical linear actuators rely on one of five common drive train types: ball screws, lead screws, timing belts, rack and pinion tracks and linear motors.

Common drive trains

Ball screws are ideal for high duty cycle applications and where high force density, precision and repeatability are required. The rolling ball bearings reduce friction and deliver high mechanical efficiency, even in continuous use. Ball screws can achieve moderate speed.

Lead screws are suitable for low duty cycle applications, or those requiring small adjustments. They typically only offer about half the efficiency of ball screws, so require twice the torque to achieve the same thrust output. However, lead screws provide cost-efficient and compact solutions for high-force applications.

The 4 key performance characteristics to help specify the right linear drive train + belt and pulley + Parker Hannifin Electromechanical and drivesTiming belts are simple, robust mechanisms for high-speed applications requiring long life and minimal maintenance, where precision greater than 100 microns is sufficient. They are efficient and easy to operate and can run at 100 percent duty cycle. Timing belts are available in longer lengths than screw drives.

Rack and pinion systems are useful for very long travels requiring high speed but are not known for their precision. They offer high force density but require regular system lubrication. In addition, removing system backlash from this type of drive train is not always possible, and they can be quite noisy in operation.

Linear motors offer high speed, acceleration and precision. Cost is the principal drawback, while force density is also less than other drive systems. The absence of a mechanical connection between the moving and static components of linear motors makes their use difficult in vertical applications.

The PETS principle

The selection options for a linear drive can be grouped into the following categories: precision, expected life, throughput and special considerations (PETS).

The Four Key Performance Characteristics to Help Specify the Right Linear Drive train + precision table + Parker Hannifin Electromechanical and Drives


For precision, always start with an understanding of needs relative to resolution. The other considerations are repeatability and velocity control. Linear motors and ball screws are typically best in terms of precision characteristics.

With lifespan, mechanical efficiency is the primary consideration, unless the requirement is for a dirty or harsh operating environment. High drive train efficiency is synonymous with long life and reduced energy consumption. Factors such as wear resistance, dirt resistance and maintenance requirements are also important. Due to their high efficiency and limited maintenance needs, timing belts are the go-to option in this category.

Throughput can be considered by first scrutinising the speed and acceleration or deceleration characteristics of each technology – depending on the length of linear travel required. If the need is for longer travel where more of the cycle time is spent at top velocity, speed is the most important. If shorter moves are required, acceleration and deceleration characteristics will take precedence. Linear motors are unparalleled when it comes to throughput.

Some other considerations to take into account when looking at each technology include material and implementation costs, while force density is a further increasingly important factor to bear in mind as machine designs continue to miniaturise, particularly when specifying end effectors or tooling mounted to an axis.

For more information about the four key performance characteristics to consider when choosing a linear drive train from our white paper click here to download.


The 4 key performance characteristics to help specify the right linear drive train + Olaf Zeiss + Parker Hannifin Electromechanical and DrivesArticle contributed by Olaf Zeiss, product manager, Actuators Electromechanical & Drives Division Europe.





Related Content

Choosing the Right Screw Drive Actuator | Three Technologies

Choosing the Right Screw Drive Train | Performance Calculator

Select the Right Drive Train Technology for 3D Printing Precision Linear Motion Systems


Four Key Characteristics to Help Specify the Right Linear Drive Train

Read More


In a world of constant technological advances, the photonics industry is seeing rapid growth with no signs of a slow-down. Photonics is the branch of technology concerned with the properties and transmission of photons. Photons are applications involving a laser. Lasers often conjure up images of an evil scientist plotting to destroy an unsuspecting city with a “laser death ray.” To the contrary, laser applications are commonly used in many markets to improve the quality of life – think healthcare or autonomous cars.  


Laser based applications in markets like:
  • Healthcare/life sciences
  • Consumer electronics
  • Semiconductor
  • Automotive
  • Machine building
  • Metal fabrication
  • 3D printing technology
  • Telecommunications (fiber optics)


Laser based applications include:
  • Life science - DNA sequencing
  • Laser based – cutting, ablation, scanning, 3D printing
  • Microscopy - electron scanning, focusing, etc.
  • High content throughput - cell imaging
  • Digital pathology
  • Metrology for electronics/semiconductor – laser line scanning and inspection
SPIE Photonics Trade Show Precise motion requirements

Applications in the photonics industry usually require a precise motion control system to function properly. In addition to these sub-micron specifications, many applications require high speeds and long lengths of travel. To meet these requirements, a linear motor stage is usually the best option. Parker offers a range of linear motor stages to satisfy these application needs. From miniature linear stages such as the miniature square rail, mSR, to completely custom designs, we can provide the linear stage that provides speed and precision.


Parker’s product and expertise in this area were on display at SPIE/Photonics West Exhibition, the world’s largest photonics technologies event in January in San Francisco. Parker displayed XY custom systems made of linear motor stages to simulate performance in laser based applications including laser scribing/cutting and cellular scanning. Customer feedback reiterated the need and desire for these products out in the field. Products need to be fast and accurate while maintaining their Abbe errors (stiffness, smoothness and flatness). Parker has designed products specifically to provide Abbe specs above the industry standard along with the drives and controllers to complete the motion system, Learn more about Parker’s linear motor stages


Precision Rotary ActuatorOther types of electromechanics also apply. Many applications still use a screw-driven stage on the Z-axis. Designers will choose this route since they usually do not require the precision or speed provided by a linear motor stage for this axis. The other advantage is that a magnetic counterbalance is not needed when the unit is not in use. Parker’s MX80S and MX45 series are ideal for these applications as they provide the needed precision at a reasonable price.

Rotation requirements
Customers may also require rotation in their application, such as laser cutting or scanning. As with linear movement, speed and precision is key for rotation in laser based applications. Making the rotary stage as small as possible is also a key factor. With that in mind, Parker’s miniature precision rotary, mPR, has been designed with small form factor (80 or 100mm diameter) while providing precise movements (resolution down to 0.01 microns) at high speeds (up to 600 RPM). Finally, many applications require simple manual slides that are adjusted via micrometer. Parker’s manual slides have been around for 40 years and are a great fit for the photonics applications.
Photonics LabAs the photonics industry evolves and requires better motion control, Parker will adapt as well to continue learning and providing the best solutions possible to customers. We are excited for the future of photonics. For more information on products from Parker’s that support the photonics industry, visit our website
Patrick LehrArticle contributed by Patrick Lehr, product manager for precision mechanics, Electromechanical and Drives Division North America, Parker Hannifin Corporation. 




Related Content:

Practical Applications for Precision Electromechanics in Photonics

Read More

When does the selection of an electromechanical solution outweigh the benefits of a hydraulic system?-Cometto Modular Transporter-Parker Hannifin Electromechanical & Drives Division EuropeLinear actuators are typically grouped into two principal types: fluid power actuators that operate on differential pressure, and electromechanical actuators driven by an electric motor. Increasingly, electromechanical solutions are providing an attractive alternative to hydraulics in a wide and diverse array of automation systems.

Electromechanical systems offer: 

  • Simpler and smaller installation
  • Greater flexibility
  • Quieter positioning and torque control
  • Lower energy costs
  • Less maintenance
  • Potential to provide more ATEX-rated solutions for use in explosive environments
Complete motion control

In complex applications, electromechanical solutions can be particularly advantageous as they provide control over the entire motion profile. Moreover, integral encoders accurately control speed and position, while some solutions can also control and monitor torque. Programmability means that motion and force profiles can be changed using software without having to shut down and reconfigure the machine.

In terms of energy consumption, unlike hydraulics, electromechanical solutions use power only when they are performing work, thus contributing to significant savings. Also, due to their minimal impact on the environment, solutions of this type are strongly preferred in applications where clean operation is important or desired.

An example case for electromechanical solutions is put by Industrie Cometto SpA, an Italy-based designer/manufacturer of trailers, semi-trailers and self-propelled vehicles, which wanted to replace hydraulic systems on its EMT (Electric Modular Transporter) to achieve greater flexibility in terms of speed and control, and make it suitable for use in ATEX classified atmospheres.


When does the selection of an electromechanical solution outweigh the benefits of a hydraulic system?-EX Series-Parker Hannifin Electromechanical & Drives Division EuropeReplacing hydraulics

The traction and steering systems on the EMT are now equipped with Parker electromechanical products. Each transporter can have from four to 16 wheels, all of which have to follow a perfect trajectory to ensure coordinated motion. With this in mind, the drive system has to guarantee precision in terms of speed, position and torque control. An AC, three-phase, 2.3kW electric motor is fitted to the traction system on the EMT.

With regard to the steering system, the position of each wheel axle is controlled electronically using an encoder. Here, each suspension unit is linked to the load platform by a rotation system driven by a 1kw electric motor. The motor is controlled by an absolute encoder and managed by Cometto’s central processing unit.

Parker supplies the complete motor and drive packages for both of Cometto’s non-ATEX and ATEX EMT vehicles. For the latter, Parker provides its EX (explosion-proof) servo-motors with AC890 variable speed drives.

The EX series is a range of permanent magnet explosion-proof brushless servo motors characterised by excellent motion quality, dynamic acceleration/deceleration capabilities and high torque output over a wide speed range. Parker’s AC890 is a compact, modular system variable speed AC drive engineered to control speed and position of open-loop and closed-loop, single- or multi-motor AC induction or PMAC motor applications. The AC890 variable speed drive is compatible with any AC motor and many speed/position feedback options.

Ultimately, electromechanical solutions offer engineers a number of potential benefits over hydraulics that are proving difficult to ignore when it comes to new system designs. These can include one or many of quality, reliability, maintenance, performance, cost, ease-of-use, noise levels and operational response.

Learn more

EX-Series Explosion Proof (ATEX) Brushless Servo Motors

AC Variable Frequency Drives, kW Rated - AC890 Series


When does the selection of an electromechanical solution outweigh the benefits of a hydraulic system?-Edi Gherbezza-Parker Hannifin Electromechanical & Drives Division EuropeArticle contributed by Edi Gherbezza, electromechanical, motion & drives
application manager & business development manager  for Motion Systems Italy

Related content

Electromechanical Technologies and Key Markets

Tube Bending OEMs Embracing All-Electric Automation

What’s Trending in Industrial Automation?

A Simple Guide to Benefits of Electromechanical Technology

Read More

Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments + washdown + Parker Electromechanical and Drives DivisionMany factors must be considered when determining which linear actuator to use in an application. Besides technical specifications such as speed, acceleration and payload, there’s another critical aspect that must be considered – the application environment. In fact, if you do not account for the environment, the rest of your application requirements can be out of specification when using the actuator.  
Application environment
Why are the details of an application’s environment so important?  Depending on the application, you may need to protect the actuator and its control from the environment. Electromechanical linear stages have critical, moving components that will only work properly within the correct environment. If you try to use the linear stage in the wrong environment, issues can range from the stage not working properly to causing damage to the unit that is beyond repair. If you have a “dirty” application (e.g., a cutting application that produces lots of scrap metal) the proper sealing and shielding are needed on the actuator to protect it from contaminants.
Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments + cleanroom + Parker Electromechanical and Drives DivisionHowever, it is not always the actuator that must be protected from the environment, but the opposite.  We know that linear stages will particulate over time due to normal wear and tear – no matter what application or environment. While we can minimize the amount of particulate from the actuator and increase its life cycle using proper seals and shielding, you must ensure the application’s environment is not compromised. Cleanroom or in-vacuum applications may require zero particulates, so it is critical that they use actuators with seals and shields to protect them. Remember, some linear mechanics are moving only microns at a time. Even the tiniest amount of contamination can compromise and ruin an application.   
Environmental factors
Consider these Environmental factors when designing for an application:
Exposure to gases other than air
Moisture presence 
Pressure level (does it need to be able to perform in-vacuum?)
Cleanliness (does it need to be rated for cleanroom use?)
Surrounding objects impacting performance (example – does another unit cause vibrations that will affect the linear stage’s specifications?)
And more – contact Parker to discuss
You must consider these factors from both sides. Will the temperature be too hot and cause my actuator to burn out? If my actuator is exposed to moisture without the proper seals, will it be damaged? Conversely, can the actuator react poorly with a chemical in the environment causing contamination throughout? Issues will arise in your application if you do not make sure the actuator and environment are compatible. To find that compatible actuator, you will need to understand its seals and shielding capabilities. 
Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments + sawmill + Parker Electromechanical and Drives DivisionSealing and shielding for protection
There are countless harsh environments that linear mechanics can be used for, but how are the units protected to work properly? The answer is using sealing and shielding technologies. A linear mechanism is comprised of various components. When the assembly is complete, there can be parts critical to the drive train and bearings that are initially exposed. If nothing is done, a harsh environment will destroy the linear stage in short time. Conversely, if the environment is a cleanroom, the actuator can particulate and cause contamination. By adding seals and shields where necessary, those critical components of the actuator are no longer exposed to the harsh environment, and the linear stage can run as it was designed to perform. For clean environments, the seals and shields on the actuator are protecting the application’s environment, not the actuator itself.
Seals and shields are both in place to keep contaminants out of a bearing. External seals must be able to prevent contaminants from entering the actuator. Integral bearing seals need to keep contaminants out and lubricant in the bearing cavity. Seals in contact with sliding surfaces are called dynamic seals and are used to seal passages between machine components that move relative to each other either linearly or in the circumferential direction. These dynamic seals must retain lubricant, exclude contaminants, separate different media and withstand differential pressures. The materials from which the seal is made should also withstand a wide range of operating temperatures, and have appropriate chemical resistance. 
Ingress protection rating
How do you know if a linear stage has the proper protection from its environment? The stage’s Ingress Protection (IP) rating will tell you this. IP ratings are defined levels of sealing effectiveness of enclosures against intrusion from foreign bodies (dust, dirt, etc.) and moisture. An enclosure rating takes the form of "IP-" followed by two digits, each of which has a specific meaning. The first indicates the degree of personal protection from moving parts and also the level of protection of the equipment from foreign bodies. The second digit defines the protection level that the enclosure offers for exposure to moisture in the form of drips, sprays, submersion etc. 
A complete reference standard for IP ratings may be found in IEC 60529. Following are some basic guidelines:
 First Number  Characterization of ingress limit  0  No protection  1  Objects larger than 50 mm  2  Objects larger than 12.5 mm  3  Objects larger than 2.5 mm  4  Objects larger than 1 mm  5  Protected from dust (limited ingress)  6  Dust-tight  Second Number  Characterization of ingress limit        0  No protection  1  Dripping water - vertical  2  Dripping water - up to 15 degree angle            3  Water spray  4  Water splash  5  Waterjet  6  Powerful waterjet  7  Temporary immersion  8  Continuous immersion

Checking the IP rating of an actuator initially can help rule out any that will not be suitable for the environment. It may also save you money. For example, the Parker 400XR Series has an IP30 rating. While it will not have any protection against moisture, it does have intrusion protection against fingers. The XE Series, an economical alternative to the XR Series, does not have an IP protection (i.e. 00). If there are concerns about injuring fingers, XR should be selected. However, if the intrusion protection is not necessary and the XE specs work for the application, the customer can save money by with the XE. Now if a customer needs protection against moisture as well, the XR Series is not the right choice. Instead, they should use the HMR Series, which has an IP54 rating.


Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments + linear positioner stages + Parker Electromechanical and Drives Division Custom solutions

Parker offers a wide array of linear positioners suitable for applications in a variety of environments, even the harsh ones. Our IP rating differs from product to product and application to application, so we are confident the right fit can be found. Once determined, sealing and shielding guidelines are followed for all our linear mechanics to meet the required customer specifications. In addition to seals and shields, positive pressure ports can be included on linear stages as well. This allows customers to purge unwanted contaminants inside their unit, keeping the performance and life cycle at a maximum.

What if you are not certain which sealing and shielding technology is needed for their application? Parker will work directly with you to provide custom engineered solutions. We will discuss your requirements and can determine the best product to use based on the environment.  Forming this partnership throughout the process ensures you receive the best solution for your application  - which is Parker’s ultimate goal.

To learn more about Parker’s linear stages our sealing and shielding capabilities, visit our website, or contact us to discuss your application needs.

Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments + Patrick Lehr + Parker Electromechanical and Drives DivisionArticle contributed by Patrick Lehr, product manager for precision mechanics, Electromechanical and Drives Division North America, Parker Hannifin Corporation. 





Related content:

Seven Factors to Consider When Selecting Linear Mechanics for a Vacuum Environment

Select the Best Sealing and Shielding for Linear Mechanics in Harsh Environments

Read More

Five Great Applications for Permanent Magnet Direct Drive Servo Motors - PM-DD - Electromechanical and Drives DivWith its high power density and flexible mounting capabilities, permanent magnet direct drive servo motors like the Parker PM-DD series have a proven track record in many manufacturing applications. Let's take a look at five successes spanning various industries.

  Vertical lathe 

As the world's communications infrastructure continues to grow and evolve, the demand for fiber optic cable has been increasing. With Parker distributor Cross Automation in Charlotte NC, we were able to provide PM-DD motors for a vertical lathe, used to dispense glass for fiber optic wiring. The combination of smooth low-speed operation, compactness, and the ability to mount directly to the rotating shaft made the PM-DD a winner over standard servo motors. 


Machine tool 

Machine tools demand accuracy, and in the second case study, the task at hand was to repeatedly index a table that was three feet in diameter. With displacement occurring 1.5 feet (457 mm) away from the motor centerline, its high resolution (20 bit) absolute encoder was critical to the application. Thanks to the PM-DD's high load carry bearings, (1500 N in this case) where previously a conventional servo motor and worm gear solution was used, the PM-DD proved to do the job while eliminating the worm gear. The drive train was simplified and ongoing maintenance associated with the mechanical gearing was eliminated. This solution was sold by Faber Associates, Parker distributor based in Clifton NJ.


In-Plant automotive assembly

Five Great Applications for Permanent Magnet Direct Drive Servo Motors - image of factory floor - Electromechanical Drives Div ParkerAutomotive assembly is a rigorous application with hundreds of interdependent operations, all of which must function reliably, at the risk of costly downtime. A rotary table was used in the operation of adjusting vehicle headlights. Simplicity and high positioning resolution were the main factors leading to the adoption of the PM-DD in an application solved by Parker distributor Reco-Wesco from Indianapolis. Being able to mount the motor directly to the table eliminated the need for multiple mechanical components that would have required maintenance and been a potential failure mode.


In-Plant automotive testing 

Automotive industry testing applications often duplicate real-life scenarios that the finished vehicles will be exposed to, but must take into account the worst-case situations. In this case, the PM-DD motor was used for an electronics test bench. Part of a multi-axis assembly, the test bench would simulate the rough vehicle road conditions, including a rollover, that the electronics might be subjected to. PM-DD was preferred over a standard servo motor due to its smooth, slow speed, operation, good bearing support and high torque.  This solution was sold by Parker distributor  RSA of Fond du Lac WI.

  Indexing table 

The fifth and final application was in the life sciences field. A PM-DD motor was used for an indexing table that carried five stations to support the assembly of medical devices. The first station was to load the part, second applied adhesive, third was for UV curing of the adhesive, fourth was inspection and fifth was where the part was unloaded. In this case, the PM-DD replaced a pneumatic indexing table. Key to its success was a smooth start and stop operation versus the previous pneumatic solution. Also, the PM-DD with Parker P-Series Drive allowed for a variety of indexing locations to be programmed providing more flexibility than a more traditional rotary indexing table. This solution was provided by Automation Incorporated, a Parker distributor out of Minneapolis MN. 


Learn more about the PM-DD by visiting our Precision Direct Drive Rotary Servo Motor Series Product webpage to buy or download a Parker P series
Direct Drive Rotary Motors​ catalog.


Five Great Applications for Permanent Magnet Direct Drive Servo Motors - Jeff Nazzaro - Electromechanical and Drives Div

Article contributed by Jeff Nazzaro, gearhead and motor product manager, Electromechanical & Drives Division, Parker Hannifin Corporation.





Related posts:

A Quick Guide: How Servo Motors Work

Tube Bending OEMs Embracing All-Electric Automation

Linear Motors | Servo Drives | PAC and More: SLAS 2016 Featured Products


Five Great Applications for Permanent Magnet Direct Drive Servo Motors

Read More

Latest Electromechanical and Drives Forum Threads