Filtration offers system solutions for the removal of contamination from liquids and gases, ensuring optimal performance for many applications and markets including industrial, food / beverage, bioprocessing, pharmaceutical, mobile, marine, and aerospace.
Latest Filtration Blog Posts


Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Fork-Lift_Parker Engine Mobile Aftermarket DivisionReducing routine service intervals is an important objective of any fleet manager. Preventing unscheduled maintenance is even more critical to keeping heavy-duty trucks and equipment operational. Methods and innovative product solutions that guarantee trouble-free operation offer tremendous value in ensuring productivity and customer satisfaction. Proper air filtration is paramount to preventing contamination from reaching the engine. Even the smallest amount of dirt can cause a huge amount of engine damage resulting in unscheduled, costly downtime and failure. When choosing an engine air filter, considering these factors will help ensure the best possible performance and engine protection:

  • Performance testing
  • Efficiency, capacity, structural stability and media strength
  • Reputation of the manufacturer
The importance of performance testing

An air filter must be highly efficient at capturing contamination throughout the full life of the filter. This makes structural stability and media strength critically important. Contaminant by-pass (going around, not through the media), failed seals or adhesives and microscopic holes in the media itself will render a filter practically useless. Rigorous testing under extreme conditions for longer than the typical service interval is an excellent indicator of how a filter will perform in its intended application.

Advances in air filtration technology Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_EnduraPanel Quote_Parker Engine Mobile Aftermarket Division

Parker Engine Mobile Aftermarket Division has recently introduced a revolutionary new air filter technology, the Baldwin EnduraPanel™. EnduraPanel air filters combine high efficiency and maximum capacity in an extremely rugged, compact design that is up to 50 percent smaller than conventional engine air filters.

"EnduraPanel's single and dual element designs provide the maximum amount of filter media with ample air flow, even when space is at a premium." 

— Steve Zimmerman, head of product management and engineering, Parker Engine Mobile Aftermarket Division




Performance under the harshest conditions

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_EnduraPanel_Parker Engine Mobile Aftermarket DivisionEnduraPanel filters have been designed to withstand extreme conditions, such as vibration and high temperatures, for extended periods without rips, tears or structural failures — providing exceptional protection to heavy-duty trucks and equipment.

These filters deliver superior efficiency throughout the entire service interval with dirt holding capacity surpassing the OE filters. Even more importantly, structural endurance testing shows how Baldwin EnduraPanel exceeds the OE in durability. Baldwin filters protect equipment throughout the filter life, even under the toughest working conditions. See figures 1-3. 


Figure 1. Capacity (g) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_CapacityTest-EnduraPanel_Parker Engine Mobile Aftermarket Division

Figure 2. Efficiency (%) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Efficiency-Test-EnduraPanel_Parker Engine Mobile Aftermarket Division

Figure 3. Structural Endurance (Cycles) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Structural-Endurance-Test-Endura-Panel_Parker Engine Mobile Aftermarket Division

Parker Engine Mobile Aftermarket Division

As a global provider of filtration products and services, our mission is to protect our customers’ engines and mobile equipment, from first to last use, through innovative filtration solutions and outstanding customer service. We have a worldwide customer base, superb product quality, an extensive distribution network and the industry's broadest product line. This comprehensive portfolio of filtration products and technologies offers customers a single streamlined source for all their engine and mobile filtration needs.

For additional information on the Baldwin EnduraPanel, please visit our website.


Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Fork-Lift_Parker Engine Mobile Aftermarket DivisionThis blog was contributed by Steve Zimmerman, head of product management and engineering, Parker Engine Mobile Aftermarket Division.






Related content

Bringing Tomorrow's Filtration Technology to the Commercial Vehicle Aftermarket

How to Protect Your Engine with Filtration in the Truck and Mobile Aftermarket

Filtration Technologies and Key Markets

Exploring Engine Filtration Today and In the Future



Advances in Engine Air Filtration for Heavy-Duty Trucks

Read More

Filtration and Biopharmaceutical Process Protection_Parker Bioscience_Murus FilterEffective filtration is vital to process protection and factors such as filter selection, testing and optimization can have an impact on process risk. Here we examine the factors to consider when implementing normal flow and tangential flow filtration systems into biopharmaceutical manufacturing processes in order to maximize process protection. 

Filtration and Biopharmaceutical Process Protection_Parker Bioscience Division_View on Demand Icon
Normal flow filtration

With normal flow filtration, the selection of an appropriate filter for the product stream at any given point will primarily be driven by the level of retention required.

In some circumstances, a highly retentive filter such as PROPOR MR may be required to remove diminutive organisms such as mycoplasma from process fluids. However, implementing an extremely retentive filtration step where it is not required will only create an additional burden on the process.

It is therefore important to understand precisely what is appropriate at each stage.

Sterilizing-grade filters such as PROPOR SG and PROPOR HC ranges are frequently employed, and correctly so in many aspects of biopharmaceutical production. However, employing a sterilizing-grade filter where only bioburden control is needed will require an oversized filter stage: this may potentially restrict the process and will create the need for additional filter integrity testing steps.

In many cases, downstream processing stages are not truly sterile — chromatography being the prime example — and therefore in this example, a bioburden control filter such as PROPOR BR will provide sufficient process protection without risking unnecessary additional process operations.

Integrity testing protocols should be designed to provide assurance of filter integrity in accordance with regulatory requirements, but must also be balanced against introducing further process risk. Additional flushing and testing operations may confirm that the filter is still fit for purpose but they can also create a risk of contamination. In addition, from a product safety perspective, the data provided may be redundant when further post-use integrity testing is performed anyway.

Vendor assistance should be requested during filter sizing exercises. The filter supplier may be able to offer additional experience, which can be brought to bear in advising on a specific filter and application pairing: this may not be immediately apparent if the operator only relied upon data from a single bench top capacity study, which would not take into account the effect of long-term process variation upon filter performance.

Operating and testing procedures should be designed to deal with troubleshooting aspects of filter use. If, for example, a filter blocks prematurely due to process variation, or if an integrity test fail result is returned, are these eventualities written into the operator protocols? And has the vendor provided input regarding best practice in each case?

Tangential flow filtration

When utilizing tangential flow filtration, the membrane cut-off used to achieve the appropriate degree of retention or transmission is clearly important.

However, it is always good practice to ensure that the process has been optimized to provide repeatable performance under defined operating conditions. For example, faster processing or better membrane recovery can be achieved through optimization studies. If these studies are not performed, this may have a detrimental effect on process efficiency or even quality.

Module format should also be considered: cassettes and hollow fibres are commonly used but may provide advantages in certain situations arising from process needs.

In some applications, aseptic closed-loop processing may be highly beneficial. For example, some vaccines are too large to be sterile-filtered and therefore processing in a pre-sterilized single-use system is ideal. This means that gamma-stable cross-flow elements with very low extractables content, such as the single-use PROPOR TFF product, are very beneficial.

In any application, process systems should also be designed to maximize product yield through the elimination of unnecessary tubing or pipework and minimizing any potential for product to be lost within the process.

Finally, sterilization methods should be considered. If gamma irradiation is used, a product such as Parker Bioscience’s single-use PROPOR TFF element is required. On the other hand, if autoclave sterilization or caustic sanitization are implemented, products such as the PROPOR TFF autoclavable or reusable elements would be appropriate.


Now watch our webinar to find out more about how to protect your biopharmaceutical manufacturing process. 

Filtration and Biopharmaceutical Process Protection_Parker Bioscience Division_View on Demand Icon
Filtration and Biopharmaceutical Process Protection - Andrew Kelly, filtration product manager - Parker Bioscience

This post was contributed by Andrew Kelly, filtration product manager - life sciences, Parker Bioscience Division, United Kingdom.

Parker specializes in automating and controlling single-use processes. By integrating sensory and automation technology into a process, a manufacturer can control the fluid more effectively, ensuring the quality of the final product. Find out more




Related posts

How to Select the Right Filter for Your Bioprocess

Why You Should Consider Hollow Fibres for Ultrafiltration

Effective Filtration of Biopharmaceutical Buffers

The Role of Prefiltration in the Optimization of Bioprocess Filtration Systems

How to Scale-up Pharmaceutical Filtration Systems | Case Study

Filtration and Biopharmaceutical Process Protection

Read More

Three Key Safety Issues to Consider When Using Compressed Nitrogen Gas Cylinders - gas cylinder changeout - Parker HannifinApproximately 36 percent of nitrogen gas supplied by gas companies is delivered in high-pressure cylinders. At first, it would appear to be a fairly simple method of supply, requiring a cylinder, pressure regulator and piping to deliver nitrogen gas to the application.

However, the following checks and procedures must be carried out every time a cylinder is exchanged and the pressure regulator re-fitted and re-connected to a gas system to ensure safe operation. It is also important to understand that when an individual is charged with the responsibility of connecting and disconnecting high-pressure cylinders to an application, they could be personally liable if anything goes wrong.

Three safety inspections for high-pressure cylinders

When taking delivery of cylinders, it is essential that the three safety inspections listed below are carried out each and every time a cylinder is changed over.

1. Colour coding and labels

Although cylinders are colour coded, this should not be relied upon to identify the contents. The label affixed to the cylinder must always be used as the primary means of contents identification. Cylinders without labels or where the label doesn’t match the colour coding should not be used. They need to be set aside or quarantined and returned to the supplier. It is essential to refuse acceptance at the point of delivery if any cylinders do not have identification labels attached.

Having determined the contents of the cylinder, it is then necessary to check that the gas is suitable for the application. The pressure of the gas in the cylinder should not be more than the regulator fitted, and the cylinder needs to be secured so that it can’t topple over — ideally in a purpose-built cylinder rack or store.

2. Cylinder valve

The cylinder valve comes fitted to the cylinder when it is delivered. It is basically an open or closed valve operated with a key/spanner. The pressure regulator is then fitted to this. If the valve is on a newly filled, unused cylinder it should have a factory sealing cap in place. Checks should be carried out to ensure the fitting is undamaged and contaminate free. It is essential that there are no signs of solvents, oils, greases or PTFE tape, and it must be clear of dirt and moisture. Note that PTFE sealing tape should never be used as the pressure regulator has its own rubber seal. PTFE can cause fire/explosions if used with certain gas species.

3. Pressure regulator
  • Check it has a date stamp or code and is within its inspection period of usually 5 years.
  • Check to make sure the identification and rating label is in place along with the manufacturer's name and or logo and that it is suitable for the gas type.
  • Check that it complies with the local standards for pressure regulators and gauges are marked to comply with the appropriate local standards, such as ISO 2503 for regulators and ISO 5171 for pressure gauges and not modified or undergone an unauthorised repair.
  • Check for general signs of damage or unauthorised modifications.
  • Externally check that the pressure relief valves are undamaged and free from modifications or unauthorised repairs. Internally check that they are free from obstruction.
  • Check the cylinder connection to make sure it is free from oils, greases, solvents, debris, PTFE and that it is perpendicular to the regulator body.
  • Check to see if the regulator gauges are in place and of the correct type for the gas and scales suitable for the gas pressures. The clear covers should be in place with the needles correctly reading zero, not below the stop bar or bent.
  • Check that the pressure rating is suitable for the cylinder pressure. For example - if you have a 230 barg cylinder, then a 230 barg maximum inlet pressure regulator should be okay, right? Maybe not, and here's why: Cylinders are filled with gas to a set pressure using a reference standard. This is normally indicated on the cylinder label. It will read something similar to "pressure at 20°C". So, if the 230 barg cylinder filled at 20°C is in an environment where the ambient temperature is approximately 40°C, located in full sun, what would be the pressure in the cylinder be? In this scenario, would a 230 barg maximum inlet pressure regulator be safe to use? Gay-Lussac’s Law applies here: If a gas’s temperature increases, then so does its pressure, if the mass and volume of a gas are held constant. This is exactly the conditions inside the nitrogen cylinder in our example. Therefore, the answer is no, it would not be safe to use because the pressure would most likely be above the 230bar SWP.
  • Check to make sure the tightening nut at the inlet and outlet is the correct thread, undamaged and free from modifications or unauthorised repairs.
  • Check that the pressure adjustment screw stays fixed to the body and that it moves freely, covering the full adjustment range.
  • Externally check to see if the pressure relief valves are undamaged and free from modifications or unauthorised repairs. Internally check that they are free from obstruction. 
  • Check that the outlet pressure adjustment range is suitable for the application and downstream equipment pressure rating.
  • Finally, check that the backs are in place and the pressure relief covers are not out of place due to an over-pressurizing incident.

Now, you should be good to go!

Three Safety Issues to Consider When Using Compresse Nitrogen Gas Cylinders - NitroSource N2 Generator - Parker HannifinAlternatively, an on-site nitrogen generator can be used and will alleviate all the hazards and risks associated with high-pressure nitrogen gas cylinders. The Parker NITROSource generator, for example, offers a unique design and advanced energy-saving technology that requires less compressed air to generate more nitrogen. Substantially lower servicing costs, reduced downtime, and longer working life make it the most cost-efficient nitrogen supply available. Additional benefits include:

  • Increased profitability – significantly lower unit gas cost, more up-time, NITROSource also incorporates energy-saving technology which matches demand to the application resulting in the user making further savings
  • Increased reliability – gas available on demand 24/7, only pay for gas produced
  • Sustainability – short payback on investment, long service life, low energy use and reduced CO2 footprint


Watch this video to learn more about the Parker NITROSource on-site nitrogen generator.



Three Safety Issues to Consider When Using Compressed Nitrogen Gas Cylinders - David Sykes, gas generation blog team member - Parker Gas Separation and Filtration Division, EMEAThree Safety Issues to Consider When Using Compressed Nitrogen Gas Cylinders - Phil Green industrial gas application manager - Parker Gas Separation and Filtration Division, EMEAThis post was contributed by Dave Sykes, gas generation technology blog team member, and Phil Green, industrial gas application manager, Parker Gas Separation and Filtration Division EMEA.



Related content:

Top Frequently Asked Questions About Nitrogen Generators

Is On-Site Nitrogen Gas Generation Economical for Variable Flow Applications?

Nitrogen: A Cost Effective Way to Extend Food Shelf Life

Parker Balston Extends Warranty on All Industrial Nitrogen Generators

Nine Reasons To Consider On-Site Nitrogen Generation

Three Safety Issues to Consider When Using Compressed Nitrogen Gas Cylinders

Read More

Protecting Your Bioprocess From the Risk of Human Error_Parker Bioscience Division_MistakeIn Parker Bioscience’s webinar entitled Protect The Process, Protect The Patient, the concern that biopharmaceutical manufacturers have regarding the impact of human error on their processes was all too evident.

When asked "what do you see as the biggest cause of operational errors?" 71.4 percent of participants cited "human error", compared to 14.3 percent who cited "consumables failure" and 7.1 percent who named "equipment failure" as the main culprit. 

Protecting Your Bioprocess From the Risk of Human Error_Parker Bioscience Division_View on Demand Icon



The risk of human error and the subsequent damage this can cause to a process — product batches, delivery to market and ultimately, patient health — is clear.


But what can be done to mitigate this risk?

One option is to use automation. Let’s look at the main benefits that automation can provide within the single-use sector.

A fully manual process is very labour and operator intensive and involves a high level of manual data acquisition, manual analysis and manning of workstations. Indeed, sometimes many operators are required simply to look after one single process step.

Timings and end points can be subjective, and variation can be caused by human error.


Benefits of using automation

In a world of standardization, manual processing is not the ideal scenario. On the other hand, if we look at automation within the single-use sector, it can offer a huge number of improvements to biopharma process:

  • It can free up the operator and allows for safe and effective multitasking while ensuring the safety of processes and products.
  • It can reduce the number of operators required for the process tasks.
  • The process can be standardized with many single-use sensors such as those within Parker Bioscience’s SciLog® range controlling parameters such as pressure, and monitoring and feeding back on parameters such as conductivity and temperature.
  • Automation can eliminate many of the errors associated with human interfacing by utilizing standardized reliable programming to ensure consistency and robustness.
  • Data acquisition and analysis can be automated, and transcription error-free reports can be generated automatically.

Even with clear batch records and SOPs, it is possible there are differences in the way that different teams perform tasks, and there is also the potential for transcription and other human errors which can produce some variation in process controls, systems and quality documentation.

Also, when processes are transferred between facilities, there may be differences in the way processing steps are conducted in order to achieve facility fit. As much standardisation as possible surrounding this area would be an ideal scenario as it allows for faster implementation and validation.

Automation can help in all of these scenarios and is able to detect and reduce variation within processing parameters which would be impossible to perform manually.

Protecting Your Bioprocess From the Risk of Human Error_Parker Bioscience Division_View on Demand Icon

Protecting Your Bioprocess From the Risks of Human Error - Graeme Proctor, product manager - Parker BioscienceThis post was contributed by Graeme Proctor, product manager (single-use technologies), Parker Bioscience Division, United Kingdom





Parker Bioscience Division specializes in automating and controlling single-use bioprocesses. By integrating sensory and automation technology into a process, a manufacturer can control the fluid more effectively, ensuring the quality of the final product. Visit to find out more.


Related Content

What's Stopping You From Automating Your Single-Use Process?

Automated Single-Use Technology and Its Impact on Quality

Engineering Managers: Streamline Your Bioprocess With Automation

Four Sources of Process Variation in Biopharmaceutical Manufacturing

A Strategy for Avoiding Manual Errors in Biomanufacturing

Protecting Your Bioprocess From the Risk of Human Error

Read More

the importance of Condition Monitoring to Your Business-shipping vessel-Parker Engine Mobile Hydraulic and Fuel Filtration DivisionCondition monitoring has a key role to play in every maintenance programme and can be a valuable tool for optimising safety standards, maximising operational efficiency, and enhancing profitability.

Despite proven gains resulting from employing effective condition monitoring and reliability-centered maintenance practices, all too often its implementation is haphazard rather than strategic, further stretching already scarce resources and having little positive effect on productivity – or the bottom line.

When we consider the lifecycle of an asset – from the design, installation, operation and decommissioning – our expectations are that it will perform its required function efficiently for as long as it’s required. Indeed in a laboratory setting, this isn’t an unreasonable assumption. However, in the less forgiving marine environment, with large variations in weather, crew, and aptitude, it is vital to take into consideration how these variables can affect the operational life of critical assets, and proactively monitor these systems to ensure that operations are not compromised by unexpected breakdowns.

Condition monitoring has one goal: to ensure that an asset can effectively function to meet the demands of the operation, whenever it’s required. To do that, the necessary people, processes, and resources must be available to maintain the asset in a fit-for-service condition. This can be done reliably, safely and cost-effectively by employing a combination of condition monitoring tools, both on and offline. All that’s required is a consistent, top-to-bottom appreciation of the compound benefits that accrue to organisations that prioritise asset integrity.  

A number of innovations have influenced condition monitoring in recent years that today allow engineers to enjoy the benefits of a combination of online, onsite and laboratory testing.

Digitalisation is fundamentally changing the way marine maintenance services are conducted. Advanced data analysis is helping companies optimise the efficiency of their operations and improve the performance of their assets. One of the most prominent advocates in this area is the original equipment manufacturer, Wärtsilä.

It employs asset performance optimisation concepts extensively and uses interactive and real-time data to help predict maintenance needs well in advance, thus enabling better planning and support services. A number of innovations have influenced condition monitoring in recent years that today allow engineers to enjoy the benefits of a combination of online, onsite and laboratory testing. Through more detailed but potentially delayed sample results from a laboratory, supplemented by the real-time information delivered by onsite testing, operators have the most accurate picture of the condition of the systems and equipment onboard. 

“Condition monitoring has one goal: to ensure that an asset can effectively function to meet the demands of the operation”

The skills shortage and difficulty finding fully-trained personnel in the marine industry has been well documented over recent years, which is why condition monitoring experts have continued to develop technology that is simple to use and doesn’t require extensive training or re-education, whilst still providing accurate and detailed information. The cylinder liner, for example, is a crucial part of a ship’s engine.


Monitoring wear extends operational life

The Importance of Condition Monitoring to Your Business - Parker Kittiwake-LinerScan- Engine Mobile Hydraulic and Fuel Filtration DivisionMonitoring wear not only extends operational life but also prevents unexpected and costly repair bills and unscheduled downtime that ship owners can ill afford, with the average cost for a replacement liner at over $150,000. Global carrier Matson has installed Parker Kittiwake’s LinerSCAN, an online sensor which instantly reports changes in the cylinder caused by abrasive wear, onto several of its vessels as part of a range of condition monitoring tools. Payback proved immediate, as on the first voyage after installation, the LinerSCAN system indicated increased wear on the cylinder liners. Upon investigation, Matson detected damaging levels of cat fines in the system on one of its vessels, identified the cause of the issue and addressed the problem before the damage occurred.

Tools such as online sensors and onboard test kits can empower engineers to make fast and informed decisions with confidence. By monitoring wear levels in real time through online sensors such as LinerSCAN, engineers are alerted to escalating cylinder liner wear and are able to react quickly to changes, enabling preventative maintenance during the ship’s passage to the next port and ensuring against expensive downtime.

Today’s oil analysis follows a new triangular paradigm. Real-time, online oil analysis via sensors is the most straightforward and efficient tools for monitoring critical machinery onboard vessels in remote locations.

The Importance of Condition Monitoring to Your Business - Parker Kittiwake Cold Corrosion Test Kit - Engine Mobile Hydraulic and Fuel Filtration DivisionCoupled with effective portable onboard test kits, many existing and potential problems can be detected and addressed within minutes rather than days. This is still fundamentally supported by offsite, laboratory analysis to provide more detailed analysis, plug information gaps and validate decisions. The advent of slow steaming brought with it the challenge of cold corrosion, due to optimum engine operating temperatures not being attained. Cold corrosion is when sulphuric acid forms on the engine cylinder liner walls and corrodes the liner surface. The Parker Kittiwake Cold Corrosion Test Kit (CCTK) is an onboard tool that gives a clear indication of whether there is a serious problem without the time delay and cost incurred with sending samples for laboratory analysis.

“Kittiwake’s condition monitoring equipment provides information rather than subjective data that can be acted upon immediately, preventing premature wear and subsequent damage”

When used alongside ferro-magnetic analysers, such as the new Kittiwake Ferrous Wear Meter (FWM), operators can identify levels of both abrasive iron and corrosive iron compounds in minutes. It is through employing a combination of online and offline tools that encompass a comprehensive range of processes within the system that operators can best arm themselves with the information they need to manage maintenance, prevent damage and maximise uptime. Kittiwake’s condition monitoring equipment provides information rather than subjective data that can be acted upon immediately, preventing premature wear and subsequent damage. Condition monitoring onboard is a maintenance tool rather than a scientific research tool. Downtime costs money and impacts profitability, which must be steadfastly avoided, especially in today’s financial climate. So with the spectre of downtime ever present, condition monitoring systems and oil analysis programmes are the first line of defence for diagnosing problems with critical plant machinery and equipment.

The impact of successful troubleshooting using a combination of the state-of-the-art diagnostic equipment available can equate to millions of dollars in savings across a fleet. Critical asset failure takes a vessel out of service immediately, affecting profitability, reputation viability as a line operator and invites downstream complications that interfere with successful strategic planning.

the Importance of condition Monitoring to Your Business - Quote from Warsila - Engine Mobile Hydraulic and Fuel Filtration DivisionThe benefits of prevention are often overlooked and sacrificed.

“For ship owners, uptime is the most crucial factor affecting quality and profitability.”

Magnus Miemois, Director of Field Services at Wärtsilä


Even though it might not be instinctual, the present downturn presents a valuable opportunity to revisit the existing asset integrity and reliability processes. Shortcutting safety and performance could become apparent in the future with incidents and accidents costing more than the required investment for assurance.

For many, this will be a step-change policy - investing in onboard condition monitoring and embracing 21st-century marine engineering rather than relying on intuition or the strict period-based maintenance of old.   


The Importance of Condition Monitoring to Your Business - Larry Rumbol Parker Kittiwake Article contributed by Larry Rumbol, condition monitoring market development manager (marine), Engine Mobile Hydraulic and Fuel Filtration Division, United Kingdom. Originally published in Marine Trader 






Additional articles related to condition monitoring:

Optimising Feed Rate in the Fight Against Cold Corrosion

Fuel Switching: Monitoring to Prevent Damage

Bunker Quality: Why Changes to ISO 8217 Increase the Need for Condition Monitoring

Reduce Failure of Hydraulic Systems with Preventive Maintenance

Reliability Centered Maintenance Reduces Costly Downtime in Oil & Gas Applications

The Importance of Condition Monitoring to Your Business

Read More

The Importance of a Maintenance Plan for Manufacturing Equipment_Compressor-Station_Parker Gas Separation and Filtration EMEAIn a manufacturing facility, it is essential that equipment runs at optimum performance, not only to maintain production but also ensure staff safety and product quality. In many cases, when equipment fails, it is due to the fact that the correct service intervals have not been met and/or replacement parts installed are not in line with genuine original manufacturer's specification. 

By employing a scheduled service plan, approved by the original equipment manufacturer, maintenance and operation managers can rest assured that equipment and systems run smoothly. This blog discusses the benefits of implementing a scheduled maintenance plan as well as the importance of choosing the right equipment to ensure uninterrupted production.

Benefits of a maintenance plan 
  • Significantly reduce the probability of catastrophic equipment failure.
  • Prevent major repairs by catching issues early.
  • Extend system and component life.
  • Reduce insurance claims.
  • Ensure worker safety.
  • Reduce energy costs by ensuring machinery runs at maximum efficiency.
  • Prevent costly, unscheduled repairs.
  • Identify parts that need to be replaced before a breakdown occurs.
  • Eliminate delayed shipments due to production interruptions.
  • Forecast equipment upkeep costs.
Guaranteed performance

Compressed air treatment and industrial gas equipment are vital elements in production machinery operation. Investing in the right equipment and properly maintaining it are critical to uninterrupted production. Some factors to consider when selecting compressed air treatment and industrial gas generation systems include:

  • Compressed air quality
  • Gas purity
  • ISO compliance
  • Third party validation
  • Energy efficiency
  • Warranty
  • Availability of replacement parts
  • Experienced technical service staff

The Importance of a Maintenance Plan for Manufacturing Equipment_NitroSource-Generator_Parker Gas Separation and Filtration EMEAParker’s Gas Separation and Filtration Division EMEA (GSFE) compressed air treatment and industrial gas products, for example, are designed to maximize uptime in the most effective and energy-efficient way. Parker's compressed air treatment products are Third Party validated to deliver 100% compressed air quality and high efficiency. Parker's industrial nitrogen generation systems feature advanced energy-saving technology for reduced energy consumption. 

Industry-leading extended warranty

Parker GSFE's confidence in its products has led to the introduction of an industry leading 5 year extended warranty across its industrial range of products — in addition to the standard one year guarantee (some exclusions apply but these are clearly defined in the terms of the warranty which is available on request). This unique warranty combined with a maintenance plan provides manufacturers with the peace of mind that equipment will operate reliably and efficiently — allowing them to concentrate on what really matters.

Replacement parts at no cost

With a maintenance plan in place, businesses can easily forecast their equipment upkeep costs and, with Parker’s extended warranty, be sure that they will be entitled to replacement parts free of charge without any complicated process or tiresome insurance claims. What’s more, the warranty itself is free, by simply registering their new products within 180 days of invoicing and signing up to an approved suppliers service plan, owners of Parker GSFE equipment can be assured of a lifetime of efficient operation.

You’re in good hands

All Parker approved service technicians are continually trained to the highest standards and will always guarantee that genuine Parker spares and consumables are used. Also, with the additional benefit of being able to call upon their expert advice and knowledge of industry standards, you can be assured that your process is working to its full potential. 

Once the product is installed and the service plan is agreed, all that is required is the minimal input of some important information via the warranty portal. To make things as simple as possible, this information can be provided by either the product owner or the Parker partner who will carry out the scheduled service. Once registered, simply continue with the day to day operations, safe in the knowledge that your process is assured.


The Importance of a Maintenance Plan for Manufacturing Equipment_Parker-Extended-Warranty-Brochure_Parker Gas Separation and Filtration EMEAFor more information please download our extended warranty brochure, or contact your approved distributor or local Parker sales office.








Why You Need a Maintenance Plan for Manufacturing Equipment - David Sykes - Parker Gas Separation & Filtration EMEAThis article was contributed by David Sykes, compressed air and gas treatment technology blog team member, Parker Gas Separation and Filtration EMEA




Related posts

Compressed Air Treatment Solutions for Today's Manufacturing Plants

Is On-Site Nitrogen Gas Generation Economical for Variable Flow Applications?

Nine Reasons To Consider On-Site Nitrogen Generation

Portable Rental Air Dryer for Short-Term Compressed Air Requirements

The Importance of a Food Grade Compliant Nitrogen Gas Supply


Why You Need a Maintenance Plan for Manufacturing Equipment

Read More