Filtration

Filtration offers system solutions for the removal of contamination from liquids and gases, ensuring optimal performance for many applications and markets including industrial, food / beverage, bioprocessing, pharmaceutical, mobile, marine, and aerospace.
Latest Filtration Blog Posts

Automating and Enclosing Bulk Fill Operations - The Way Forward?_SciLog SciPure FD System_Parker Bioscience FiltrationThe consequences of failure during downstream processing are severe. Following the Affinity Chromotography stage, the value of the product increases significantly at every step. A failure at the final bulk filling stage, therefore, could lead to the waste of millions of dollars’ worth of drug product.

 

It’s vital, therefore, to safeguard the bulk filling process. But traditional methods of conducting bulk fill operations have several disadvantages including:

 

1. Manual handling

This introduces the possibility of human error to the bulk filling process. It is also labour intensive, meaning that process operators need to divert their resources into this task.

 

2. Operator training

When bulk filling is carried out manually, investment must be made in operator training. This can be costly, both financially and in terms of the time dedicated to it by personnel.

 

3. Supply chain complexity

By using a range of components from several different suppliers in the bulk filling process, there is more potential for variation – and more time must be spent on sourcing and ordering suitable components.

 

4. Laminar air flow (LAF) maintenance and validation

In traditional bulk fill operations, laminar air flow must be maintained and validated to protect the products from contamination. This requires time and resources.

 

5. Shipping issues

At the shipping stage, poor handling of bottles – and the use of unsuitable containers – can lead to damage to products before they even arrive at their destination.

 

6. Non-standard operations and process variability

Traditional methods of bulk filling introduce variability into the process. If bulk filling operations aren’t standardized, they can be subject to a number of factors which can impact the final product. Factors such as different flow rates applied by different operators come into play.

 

The solution

Automating and enclosing bulk fill operations can address the challenges detailed above and increase safety for operators. Parker Bioscience Filtration has developed the SciLog® SciPure FD system as an automated and integrated single-use system for final bulk filtration, filter integrity testing and dispensing into final bulk product containers.

 

Here are some of the benefits:

 

Automation

This reduces the risk of human error from manual handling and allows operators’ resources to be spent on other tasks.

 

Standardization

Standardizing operations means that training can be simplified and variations in the process can be eliminated.

 

Enclosure

Enclosing the process allows operators to process highly potent molecules and protects both the operators and the process. And, as the flow path is completely enclosed, both filtration and dispensing can be performed in areas of lower classification, eliminating the requirement for vertical laminar flow cabinets.

 

The SciLog® SciPure FD system

The SciLog® SciPure FD system benefits from innovative component selection based around material science studies, improved filling accuracy (+/-1%), and greater flexibility in the scale of filling (from 50ml samples to 20L).

 

The system features include a barcode reader for manifold tracking, reverse flow and purge options to maximize product recovery and fully programmable alarms and interlocks to product and process.

 

 

A validated shipping solution

Automating and Enclosing Bulk Fill Operations - The Way Forward?_SciLog SciPure FD Shipping Solution Bottles with anti-foaming J-Tube design_Parker Bioscience FiltrationTo reduce the risk of damage to the product when shipping, Parker Bioscience Filtration has designed a fully validated shipping solution to complement and extend the capabilities of the SciLog® SciPure FD System. Parker Bioscience Filtration has created a unique bottle design that offers manufacturers the confidence that bulk drug products will arrive at their final destinations without contamination.

 

Parker Bioscience Filtration drew on its extensive material science knowledge during the development of the bottle and material selection was based on an FMEA study. The bottle integrity has been validated down to -89˚C.

 

Parker Bioscience has also developed an anti-foaming device that eliminates foam and enables a higher filling speed.

 

Conclusion

The development of the SciLog® SciPure FD System is an example of the change in the vendor/end user relationship: by using a vendor such as Parker Bioscience Filtration, which can provide a complete solution, end users can increase their productivity and gain greater control and protection over their processes.

 

Graeme Proctor_Parker Biosicence Filtration

This post was contributed by Graeme Proctor, product manager (single-use technologies), Parker Bioscience Filtration, United Kingdom

Parker Bioscience Filtration specializes in automating and controlling single-use bioprocesses. By integrating sensory and automation technology into a process, a manufacturer can control the fluid more effectively, ensuring the quality of the final product. Visit www.parker.com/bioscience to find out more.

 

 

 

Related content

Automated Single-Use Technology and Its Impact on Quality

Engineering Managers: Streamline Your Bioprocess With Automation

What's Stopping You From Automating Your Single-Use Process?

Four Sources of Process Variation in Biopharmaceutical Manufacturing

Protecting Your Bioprocess From the Risk of Human Error

Automating and Enclosing Bulk Fill Operations - the Way Forward?

Read More

Mycoplasma Contamination: Understanding the Risks and Taking on the Challenges_Mycoplasma_Parker Bioscience FiltrationMycoplasma contamination events, although rare, can have an enormous and immediate negative impact on biomanufacturers leading to reduced productivity and delays in products reaching patients.

Parker Bioscience Filtration will be examining how to implement a holistic approach to the prevention of Mycoplasma contamination in an upcoming webinar entitled: The Prevention and Control of Mycoplasma Contamination in Bioprocessing which will take place on January 15, 2019, at 3 p.m. London time/10 a.m. New York time. 

Here presenters Guy Matthews, global market development manager, and Dr. Carolyn Heslop, technical support group team leader, answer common questions on the threat posed by Mycoplasma contamination and how this can be tackled by biopharmaceutical manufacturers.

 

What are the potential consequences of Mycoplasma contamination?

“Short-term consequences for a biopharmaceutical manufacturer can include unplanned downtime and lost batches. This can result in the supply of pharmaceutical products to patients being affected. In the long term, there may be financial consequences through a loss of confidence in the manufacturer and a resulting decline in the company’s stock value.”

—  Guy Matthews

 

Why does Mycoplasma contamination pose such a risk in biopharmaceutical manufacturing processes?

“As Mycoplasma can infect mammalian cell cultures through adhesion and subsequent fusion to cell membranes, this allows them to exploit the conditions and synthesized molecules provided by the host cell. This means that detection and quarantine procedures must also be implemented around cell lines. Mycoplasma can vary in size and shape from 0.2 microns upwards, have no peptidoglycan cell wall and exhibit pleomorphism (the ability to alter size and shape in relation to environmental conditions). This means that they are capable of penetrating sterilizing grade filtration systems.”

— Dr. Carolyn Heslop

 

What steps should biopharmaceutical manufacturers consider in combatting this threat?

“Start with the basics: employing the standards of Good Laboratory Practice. Considering factors such as the storage and packaging of media, and understanding the nature of the supply chain are all important factors in mitigating the risk of Mycoplasma contamination. Identifying where contamination is likely to originate from and mitigating the risk at the source can prevent problems further on in the process. Gamma irradiation or heat inactivation to eliminate Mycoplasma present on gamma or heat-stable incoming raw materials can be used to guard against contamination. However, not all media components can be heated or subjected to irradiation. Therefore, filtration has a vital role to play in combating contamination during the biopharmaceutical process. Biopharmaceutical manufacturers should consult with their filter suppliers on issues such as filter sizing to ensure that their filtration systems are optimized appropriately."

— Guy Matthews

 

What kind of filtration system is needed?

“In order to effectively control Mycoplasma, the use of a Mycoplasma retentive 0.1 micron filter – such as Parker's PROPOR MR – is recommended. However, as the filter is twice as tight as a standard 0.2 micron sterilizing grade filter, pressure levels in the process can be a major concern. Filters may not function effectively if the flow is too rapid – for instance when pressure peaks occur.”

— Dr Carolyn Heslop

 

Is there a solution to this challenge?

“Biopharmaceutical manufacturers could consider implementing an automated single-use system. This ensures that critical process parameters such as pressure levels can be constantly monitored, ensuring the process stays within the validated process limits. An automated single-use system will also remove the possibility of human error – and give manufacturers more control over the process.”

— Guy Matthews

 

Sign up for our webinar and learn how to mitigate the risk of Mycoplasma contamination

Mycoplasma Contamination: Understanding the Risks and Taking on the Challenges - Webinar - Parker BioscienceFor more information on the advantages of single-use technology in mitigating the risk of Mycoplasma contamination and how to implement a holistic approach to the prevention of Mycoplasma contamination, register for Parker Bioscience Filtration’s forthcoming webinar: The Prevention and Control of Mycoplasma Contamination in Bioprocessing. The webinar will take place on January 15, 2019, at 3 p.m. London time/10 a.m. New York time

 

Mycoplasma Contamination: Understanding the Risks and Taking on the Challenges_Guy Matthews_Parker Bioscience FiltrationMycoplasma Contamination: Understanding the Risks and Taking on the Challenges_Dr Carolyn Heslop_Parker Bioscience Filtration

This post was contributed by Guy Matthews, global market development manager, and Dr Carolyn Heslop, technical support group team leader, at Parker Bioscience Filtration, United Kingdom.

 

 


 
Parker Bioscience Filtration specializes in automating and controlling single-use processes. By integrating sensory and automation technology into a process, a biopharmaceutical manufacturer can control the fluid more effectively, ensuring the quality of the final product.
 

Related content

Process Protection: What Does It Mean to You?

Automated Single-Use Technology and Its Impact on Quality

Four Sources of Process Variation in Biopharmaceutical Manufacturing

Controlling Supply Chain and Process Risk During Biomanufacturing

What's Stopping you from Automating your Single-Use Process

 

Mycoplasma Contamination: Understanding the Risks and Taking on the Challenges

Read More

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - Car Exhaust Pollution - Parker HannifinMany companies, including those in the food and beverage, pharmaceutical, cosmetics, manufacturing and electronics industries, recognize the negative effects on quality created by oil contact with their product during production. Product rejections and consumer safety concerns associated with oil contamination can have broad negative financial and commercial impacts on a company. However, an often overlooked source of oil in compressed air — ambient air — is frequently misunderstood, underestimated or ignored.

In this blog, we’ll examine the effect that ambient oil vapour levels can have on downstream compressed air quality and what to consider when looking for technically oil-free compressed air to ISO8573-1 Class 0 or Class 1 for total oil.

 

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - White Paper Oil Vapour in Ambient Air - Parker HannifinFor details on oil vapour testing levels in ambient air, test methods, compliance and other gaseous contaminants of concern, download the full white paper “Oil Vapour in Ambient Air”.

 

 

 

 

 

 

What is ambient air?

Ambient air is the air we breathe and it’s all around us. It’s also the air that is drawn in by air compressors. Ambient air is made up of approximately 78% nitrogen and 21% oxygen. The remaining 1% contains a mix of argon, carbon, helium and hydrogen as well as a variety of contaminants — oil vapour being one of them. Ambient air is an often overlooked source of contamination that can have a big impact on a compressed air system.

 

How is ambient air contaminated?

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - Factory Exhaust Pollution - Parker HannifinAmbient air quality is directly impacted by air pollution caused by industrial processes such as burning fossil fuels and emissions from vehicle exhaust, oil and gas fields, paints, and solvents.

Oil vapour in ambient air is made up of a combination of hydrocarbons and volatile organic compounds (VOC). Ambient air typically contains between 0.05mg/m3 and 0.5mg/m3 of oil vapor, however, levels can be higher in dense, urban or industrial environments or next to car parks and busy roadways.

These levels may seem negligible, but when it comes to compressed air contamination, we must consider the effect that compressing the air has on the ambient contamination, the amount flowing into the compressed air system, and the time the compressor is operating.

 

Compressing air – compounding the problem?

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - Compression of compressed air - Parker HannifinThe process of compression, as well as flow rate and time, build the level of oil in the compressed air that travels through a production system — air that eventually finds its way to production equipment, instrumentation, products and packaging materials.

Compression, or pressurizing the compressed air, can significantly increase the volume of oil. The greater the operating pressure, the higher the potential level of oil in the compressed air. This is compounded by the flow rate and time of operation. Compressors are often designed to operate continuously. This means that the concentration of oil continues to multiply in the confined space of the compressed air system. In turn, it will only exit the system at points where the air is released. These exit points are often in areas where the contaminated air comes in contact with product, production equipment or instrumentation. So, what may seem like negligible levels of hydrocarbons and VOC in ambient air, can become a great concern when the same is drawn in and compressed for use in manufacturing.

 

Effect on quality

Once inside the compressed air system, oil vapour will cool and condense, mixing with water in the air. This contamination causes numerous problems to the compressed air storage and distribution system, production equipment and final product leading to:

  • Inefficient production processes.
  • Spoiled, damaged or reworked products.
  • Reduced production efficiency. 
  • Increased manufacturing costs.
  Oil-free compressors

Due to the financial and commercial impact of contaminated product, many companies specify the use of an oil-free compressor, in the mistaken belief that this will deliver oil-free compressed air to critical applications. 

Oil-free compressed air systems are typically installed without downstream purification equipment intended to remove oil, as they are deemed unnecessary accompaniments. While it is true that oil-free compressed air systems will not contribute contamination in the manner that oil lubricated systems will, oil vapour from ambient air remains untreated.  

  Considerations for technically oil-free air

Technically oil-free air, in accordance with ISO8573-1 (international standard for compressed air purity) Class 0 or Class 1 for Total Oil, can only be guaranteed through the proper application of downstream purification equipment. This equipment may include water separators and coalescing filters to remove liquid water and oil, aerosols of water and oil, and solid particulate as well as adsorption filters to treat oil vapour. Compressed air users seeking an oil-free source of air would be wise to consider these precautionary purification steps, whether they are used with oil-lubricated or oil-free compressed air systems. 

In order to establish compliance with ISO8573-1 Class 0 or Class 1, the international standards categorizing oil level in compressed air, users must perform tests to assess both oil aerosol and oil vapor presence in their systems. The levels of each phase will combine to establish total oil in the compressed air system. 

To conduct the tests, samples of each phase must be drawn through a solvent extraction process and analyzed using gas chromatography (GC) or Fourier transform infrared (FT-IR) technology. The combination of the two methods will provide an accurate reading down to 0.003mg/m3. 

While there are other methods for testing oil levels, like Photo Ionisation Detector (PID), these will leave certain compounds undetected. To this end, they should be used for estimation purposes only. GC and FT-IR will provide results that can be related to ISO standards with reliable and complete accuracy.  

 

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - Oil Free Air System OFAS - Parker Hannifin Advanced solutions

Parker has recently introduced a new compressed air purification system. The OFAS Oil Free Air System is a fully integrated heatless compressed air dryer and filtration package suitable for use with any compressor type and can be installed in the compressor room or at the point of use. Fitted with a third adsorbent column for oil vapour removal, the OFAS has been third-party validated by Lloyds register to provide ISO 8573-1 Class 0, with respect to total oil from both oil-lubricated and oil free compressors, ensuring the highest quality air at the point of use for critical applications.

 

Conclusion

Compressed air is vital to any production process. Whether it comes into direct contact with the product or is used to automate a process, a clean, dry reliable compressed air supply is essential. If the compressed air contains oil, the consequences can be high both financially and in terms of brand damage. 

 

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - White Paper Oil Vapour in Ambient Air - Parker HannifinFor details on oil vapour testing levels in ambient air, test methods, compliance and other gaseous contaminants of concern, download the full white paper "Oil Vapour in Ambient Air"

 

How Oil Vapour in Ambient Air Affects Downstream Compressed Air Quality - White Paper Oil Vapour in Ambient Air - Parker HannifinThis blog was contributed by Mark White, compressed air treatment applications manager, Parker Gas Separation and Filtration Division, EMEA.

 

 

 

 

 

Related content

10 Contaminants Affecting Your Compressed Air System - Part One

10 Contaminants Affecting Your Compressed Air System – Part Two

Seven Myths About Oil-Free Compressors

Why Are Coalescing Filters Installed in Pairs?

How Oil Vapour in Ambient Air Affects Compressed Air Quality

Read More

The Biopharmaceutical Industry's Definition of Integrity - Wooden Letters Spelling Word - Parker Bioscience Filtration DivisionOne of the challenges faced in any biopharmaceutical process is bioburden control and containment — or how do you keep what is out, "out" and what is in, ‘"n".

For a stainless steel-based manufacturing system, the process is well understood. The lines are set up, the CIP and SIP cycles are run, the appropriate valves are closed and the system is pressurized and then left for a period of time, perhaps overnight, while it is monitored for pressure decay. If the pressure decay is minimal, you have an integral system.  

If you tried this method with a single-use system, assuming the bag could take the pressure, at a minimum you would see losses from the tubing as it is a porous material which has a diffusion rate. Identifying a fail in a single-use system based on pressure decay, therefore, becomes difficult. The question is, is the decay due to a leak and therefore a faulty assembly or is it diffusion across the tubing material on an assembly that is intact and fit for use? Commercially available systems are now available which will provide the answers.

 

Integrity testers or leak detection systems?

A key point for discussion is: should the biopharma industry be talking about integrity testers or should we be talking about leak detection systems? This is an important difference due to the weight this industry places on the word integrity, especially if we talk about integrity tests.

If we use the language of integrity testing, it implies a level of security backed up by validation and a clear binary result. The meaning in this context is well defined and if a system fails an integrity test, a batch ultimately could be rejected, pending any rework or investigation.

At the post integrity testing stage, you can report that a sterilizing grade filter is integral or is not by using recognized and validated methods. However, it may be more difficult to make the same statement for a single-use assembly.

As an industry, we should be sure what integrity means in this context and how it should be described.

Leak detection on a system requires and allows for the interpretation of the results. Of course, if the interpretation is backed up by the manufacturer’s validation package then so much the better. The questions that are open are:

  • What size of leak/hole in the system, can be detected and is there a critical limit?
  • Can a collection of small holes be equal to one large hole, possibly giving a false negative?
  • What is the impact of tubing on the result?
     
Mind your language

There is no need, however, to revert to stainless steel in bioprocessing operations. Stainless steel is not without its own challenges and potential points of weakness. The connections on a system, many of which are not used in a process — for example blanking ports on a vessel — all need to be assembled and tested. The stresses and strains, when going from ambient temperature to 121oC and back again, which are put on stainless steel systems, are avoided in single-use.

But we should be very clear about what we are testing and what those test results mean, so as not to create a false sense of security. The impact of simply assuming a single-use assembly is integral when there is no knowledge of how testing has been carried out can have serious consequences for a biopharmaceutical manufacturer.

We should also be challenging the vendors of single-use systems to ensure that the facilities and processes used to build and ship assemblies minimize any risk and that those processes are validated.

The old adage "you cannot test in quality, you must build it in", certainly rings true in this case.

The Biopharmaceutical Industry's Definition of Integrity_SciLog SELECT GO_Parker Bioscience Filtration Division

 

 

 

 

Find out about Parker's SciLog SELECT GO single-use assemblies

 

 

 

 

Guy Matthews - GMDM

 
This post was contributed by Guy Matthews, global market development manager at Parker Bioscience Filtration Division, United Kingdom.
 
Parker Bioscience Filtration Division specializes in automating and controlling single-use processes. By integrating sensory and automation technology into a process, a biopharmaceutical manufacturer can control the fluid more effectively, ensuring the quality of the final product. To find out more visit www.parker.com/bioscience
 
  Related content
 

The Biopharmaceutical Industry's Definition of Integrity

Read More

Optimum Nitrogen Gas Purity for Food Packaging Applications - SHOPPER - PARKER GSFEModified atmosphere packaging is now a prerequisite for many food products, extending shelf life, appearance and taste by preventing or retarding spoilage mechanisms. Quite simply, modified atmosphere packaging uses the main constituent gases that make up the Earth’s atmosphere – nitrogen, oxygen and carbon dioxide then alters the mix and or ratios to obtain beneficial qualities enabling extended food preservation.

Food grade nitrogen within Europe is given an additive number, E941, as it is classed as a food additive when used for modified atmosphere packaging applications. Many other legislative authorities globally also adopt the European standard or have a very similar specification.


Food additive E941 specification purity limits
  • Nitrogen* ≥ 99% v
  • Oxygen ≤ 1% v
  • Water ≤ 0.05% v (500ppmV)

*99% including other inert gases such as noble gases (mainly argon)

Impurities:
  • Carbon monoxide ≤10 ppmV
  • Methane and other hydrocarbons (as methane) ≤100 ppmV
  • Nitrogen monoxide and nitrogen dioxide ≤ 10 ppmV
     
Acceptable level of maximum remaining oxygen content (MROC)

The main contaminant to consider within the specification is oxygen @ ≤1%, however, this is for the nitrogen gas itself whether produced from on-site generation or supplied via traditional methods such as high-pressure cylinders or bulk liquid. One important factor for gas generation is that the higher the acceptable level of maximum remaining oxygen content, (MROC), in the output N2 stream, the less compressed air is required to produce the gas and hence the lower the overall unit gas cost. Typically, to produce nitrogen from a gas generator at 10 ppm MROC is 3 times higher cost than at 0.5%.

Often the oxygen content within the finished gas flushed food pack is higher than 1% and the actual acceptable level is specified based on the type of food, designated shelf life, storage conditions and possible spoilage mechanisms.

Many food producers employ the services of expert independent food research establishments such as Campden BRI based in the UK for example. In these facilities, packing and storage conditions along with microbial assessment can be evaluated pertaining to the specific food product to establish the optimum modified atmosphere specification — including maximum remaining oxygen content within the finished pack.

A specific range of foods that have a long history of benefiting from modified atmosphere packaging are dried, powdered products such as coffee, infant formula and spices. These are routinely packaged using Vertical Form Fill and Seal, (VFFS), machinery, fitted with a dedicated nitrogen gas flushing system.

Parker has many nitrogen gas generators operating globally, employed for modified atmosphere packaging of dried powdered foods with VFFS machines. Establishing initial suitability can often be challenging if simple logic is not taken into consideration.

 

On-site nitrogen generation: a safe, low-cost alternative to traditional methods

Food producers that use MAP are rapidly realising the benefits of on-site generation as a safe, convenient, sustainable and low-cost alternative to traditional methods of supply. The change from purchased gas to self-produced might seem a little daunting to some and there is often insistence that the new generated supply must match the existing specification with regards to oxygen content. 

 

MROC in purchased gas vs. a nitrogen generator

Sometimes an impasse is reached where a food producer wants to change to a Parker gas generator but insists on 99.999% (10ppm maximum remaining oxygen content) purity unless it can be proven that a slightly higher oxygen content gas will achieve exactly the same results, even though the acceptable oxygen level within the finished pack would typically be in the region of 2%.

Parker appreciates this stance and fully understands that for food producers there is a lot at stake in getting it right. However, considering using purchased gas at typically 10-20 ppm purity, does switching to generated gas at say 0.5% change the 2% MROC achievable in the finished pack?

In reality, it doesn’t and the reason for this is that it is almost impossible to flush all of the air out of the packs as they are rapidly and continuously formed within the packing machine, so some oxygen content from the residual ambient air always remains. Secondly, as the product is dropped into the pack from the multi-head weigher through the filling funnel, it pulls in ambient air, thus introducing a little more oxygen into the pack.

One possible way of confirming the suitability of an on-site supply of food grade nitrogen at various purities to establish the most suitable would be to install a small nitrogen generator system to run on a trial basis. This however in most instances is not logistically or physically viable.

 

Case study

Optimum Nitrogen Gas Purity for Food Packaging Applications - NitroSource Nitrogen Generator - Parker GSFERecently Parker UK was faced with the dilemma where a high-quality coffee producer desperately wanted to convert from an expensive and problematic long-standing bulk liquid supply to a NITROSource PSA on-site solution. The producer fully understood the huge cost savings that could be enjoyed by specifying 0.5% purity as opposed to 10ppm but wanted absolute proof that their reputation and produce would not be jeopardised by the change in purity.

To overcome the problems associated with the installation of a full-scale trial unit, Parker's nitrogen generation manufacturing GSFE Division UK and the Local UK Parker sales company devised a solution to introduce a small, fully variable quantity of food grade compressed air into the existing high purity nitrogen supply, thus enabling the ability to increase the MROC to any desired level. A calibrated independent oxygen analyser was installed at the device outlet to constantly monitor O2 levels.

A series of tests were carried out on one packing line where the device was installed and the producer’s quality assurance department was on hand to oversee the trial and sample the finished packs using a calibrated bench top pack analyser for MROC.

The machine was run at its standard 36 bags/min first with only the 10ppm liquid supply and then 2 levels of raised oxygen gas at 0.1% and 0.5% achieved through a small bleed in of food grade compressed air.
 

Optimum Nitrogen Gas Purity for Food Packaging Applications - Batch Sample O2 Level - Parker GSFE
 

As can be seen from the table of results, there was virtually zero difference between the gas purities with regards to MROC in the pack and the target O2 level was maintained well below the limit.

The test was evaluated by the producer's decision-making team and a twin bank NITROSource PSA system was duly ordered and installed to fulfill the demand of the entire factory.

Interesting to note that on the day of change over from the existing liquid supply to Parker generated gas, the operatives and QA department were not informed so as to execute a blind test. We are happy to report that the system actually ran for 3 weeks without any detected difference before the parties concerned were eventually informed!

Considering the total cost of ownership including energy, maintenance and capital expenditure, the entire system is expected to realise pay-back within 2 years and reduce cost by up to 75% thereafter.

Now, watch this video to learn more about NITROSource:

 

 

Optimum Nitrogen Gas Purity for Food Packaging Applications - NitroSource Brochure - Parker GSFEFor additional information on Parker NITROSource gas generators, download the product brochure. You can also contact Phil Green, the author, directly: phil.r.green@parker.com

 

 

 

 

 

Optimum Nitrogen Gas Purity for Food Packaging Applications - Phil Green - Parker GSFEThis post was contributed by Phil Green, industrial gas application and training manager, Parker Gas Separation and Filtration Division EMEA. 

 

 

 

 

Related posts

The Importance of a Food Grade Compliant Nitrogen Gas Supply

Nitrogen: A Cost Effective Way to Extend Food Shelf Life

Modified Atmosphere Packaging with a Nitrogen Generator

Nine Reasons To Consider On-Site Nitrogen Generation

Simple Safety Steps to Follow When Installing a Nitrogen Generator

Top Frequently Asked Questions About Nitrogen Generators

Optimum Nitrogen Purity for Modified Atmosphere Food Packaging

Read More

How to Distinguish a Process Water Cooler from a Chiller - industrial plant - Parker Gas Separation and Filtration Division EMEA There are numerous manufacturers in the water cooler market. Water coolers are also called chillers but it is important to draw a clear distinction between process water coolers and chillers for industrial or non-industrial cooling applications.

Many people think that all chillers for the industrial manufacturing sector are the same but there is a risk of making a huge error of judgment which could have an impact on the final choice for the application.

 

Chiller market

 

How to Distinguish a Process Water Cooler from a Chiller - Water Chiller Market - Parker Gas Separation and Filtration Division EMEA

When referring to cooling and climate control systems, we mean systems that can control both the temperature and the humidity level of a space. They are usually used for cooling rooms, electrical cabinets or other places where the water cooling temperature does not have to be precise and constant.

Chillers for cooling process water, on the other hand, are compression water cooling units that can be sub-divided, depending on the fluid used for the cooling of the condenser, into air-cooled and water-cooled. The most common cooling power range for installed systems is between 2 and 750 kW.

Process coolers for industry provide a high and constant degree of precision of the output water temperature (in all atmospheric conditions) and keep the fluid clean to prevent damage to the end user. In fact, process chillers are used to cool industrial machinery that requires the cooling fluid to be uncontaminated and at a precise and constant temperature. For example, in all of the hydraulic circuits of machines, if the oil temperature exceeds a certain limit, the machine shuts down with a resulting loss of productivity. Therefore, precise and constant cooling is both necessary and crucial for speeding up and improving production processes. When there is a need for accuracy and a water temperature lower than the ambient temperature, precision process coolers offer the only solution. A precision cooling chiller is a machine designed to cool water using a cooling circuit. It is a closed circuit which must ensure:

  • No waste of the cooling fluid.
  • No control of outlets.
  • Control of the water quality.
  • Modularity: possibility for expansion.
  • Complete flexibility.
  • Water temperature can be set.
  • Independence from ambient conditions.
  How to Distinguish a Process Water Cooler from a Chiller - Hyperchill Plus - Parker Gas Separation and Filtration Division EMEA Applications requiring cooling capacities from 2kW to 24kW

Parker's Hyperchill Plus industrial water chiller is compact, easy to use, safe and reliable in all operating conditions — guaranteeing precise and accurate control of the water temperature. Cooling capacities range from 1.7kW to 23.6kW. The availability of a wide range of accessories and options makes Hyperchill Plus an extremely flexible solution which can satisfy demands in all industrial applications. Thanks to the non-ferrous hydraulic circuit, Hyperchill Plus ensures stable operating conditions, maintaining the highest possible quality and cleanliness, which has an ensuing positive impact on the efficiency and productivity of the process, reducing maintenance costs and system downtime. Each individual Hyperchill Plus is extensively tested in the factory to guarantee the highest possible levels of efficiency and reliability in all operating conditions.

 

Applications requiring cooling capacities from 28kW to 360kW

Parker's Hyperchill range of water chillers is designed specifically for industrial applications. Advanced solutions, the utmost attention to detail and a highly sophisticated production process have resulted in a compact, reliable and easy-to-use product that offers flexibility in a variety of conditions as well as precise control of the water temperature. The high level of efficiency and low operating costs make Hyperchill the perfect solution for the modern industry.

Parker is the leading supplier of water coolers for production processes which offer complete ease of use and a high degree of operational reliability thanks to the use of the latest technologies and the availability of a vast array of versions and accessories. The Parker liquid coolers range represents a simple but effective solution to most common problems arising from the use of water. The chart below contains general technical specifications.

 

How to Distinguish a Process Water Cooler from a Chiller - Hyperchill Technical Specifications - Parker Gas Separation and Filtration Division EMEA

 

How to Distinguish a Process Water Cooler from a Chiller - HyperChill Plus product bulleting - Parker Gas Separation and Filtration Division EMEATo learn more about Hyperchill Plus download the brochure

 

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller - Compressed Air and Gas Treatment Solutions - Parker Gas Separation and Filtration Division EMEAFor information on Parker's complete compressed air and gas treatment solutions including the Hyperchill range of water chillers, download the brochure.

 

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller - Fabio Bruno, application engineer_Parker Gas Separation and Filtration Division EMEAThis article was contributed by Fabio Bruno, compressed air purification, gas generation & process cooling application engineer, Parker Gas Separation and Filtration Division EMEA.

 

        Related content

Sizing a Chiller for Your Application - What You Need to Know 

Why You Need a Maintenance Plan for Manufacturing Equipment

Protect Your Process from Mycoplasma Contamination

Filtration Technologies and Key Markets

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller

Read More