Filtration

Filtration offers system solutions for the removal of contamination from liquids and gases, ensuring optimal performance for many applications and markets including industrial, food / beverage, bioprocessing, pharmaceutical, mobile, marine, and aerospace.
Latest Filtration Blog Posts

Optimum Nitrogen Gas Purity for Food Packaging Applications - SHOPPER - PARKER GSFEModified atmosphere packaging is now a prerequisite for many food products, extending shelf life, appearance and taste by preventing or retarding spoilage mechanisms. Quite simply, modified atmosphere packaging uses the main constituent gases that make up the Earth’s atmosphere – nitrogen, oxygen and carbon dioxide then alters the mix and or ratios to obtain beneficial qualities enabling extended food preservation.

Food grade nitrogen within Europe is given an additive number, E941, as it is classed as a food additive when used for modified atmosphere packaging applications. Many other legislative authorities globally also adopt the European standard or have a very similar specification.


Food additive E941 specification purity limits
  • Nitrogen* ≥ 99% v
  • Oxygen ≤ 1% v
  • Water ≤ 0.05% v (500ppmV)

*99% including other inert gases such as noble gases (mainly argon)

Impurities:
  • Carbon monoxide ≤10 ppmV
  • Methane and other hydrocarbons (as methane) ≤100 ppmV
  • Nitrogen monoxide and nitrogen dioxide ≤ 10 ppmV
     
Acceptable level of maximum remaining oxygen content (MROC)

The main contaminant to consider within the specification is oxygen @ ≤1%, however, this is for the nitrogen gas itself whether produced from on-site generation or supplied via traditional methods such as high-pressure cylinders or bulk liquid. One important factor for gas generation is that the higher the acceptable level of maximum remaining oxygen content, (MROC), in the output N2 stream, the less compressed air is required to produce the gas and hence the lower the overall unit gas cost. Typically, to produce nitrogen from a gas generator at 10 ppm MROC is 3 times higher cost than at 0.5%.

Often the oxygen content within the finished gas flushed food pack is higher than 1% and the actual acceptable level is specified based on the type of food, designated shelf life, storage conditions and possible spoilage mechanisms.

Many food producers employ the services of expert independent food research establishments such as Campden BRI based in the UK for example. In these facilities, packing and storage conditions along with microbial assessment can be evaluated pertaining to the specific food product to establish the optimum modified atmosphere specification — including maximum remaining oxygen content within the finished pack.

A specific range of foods that have a long history of benefiting from modified atmosphere packaging are dried, powdered products such as coffee, infant formula and spices. These are routinely packaged using Vertical Form Fill and Seal, (VFFS), machinery, fitted with a dedicated nitrogen gas flushing system.

Parker has many nitrogen gas generators operating globally, employed for modified atmosphere packaging of dried powdered foods with VFFS machines. Establishing initial suitability can often be challenging if simple logic is not taken into consideration.

 

On-site nitrogen generation: a safe, low-cost alternative to traditional methods

Food producers that use MAP are rapidly realising the benefits of on-site generation as a safe, convenient, sustainable and low-cost alternative to traditional methods of supply. The change from purchased gas to self-produced might seem a little daunting to some and there is often insistence that the new generated supply must match the existing specification with regards to oxygen content. 

 

MROC in purchased gas vs. a nitrogen generator

Sometimes an impasse is reached where a food producer wants to change to a Parker gas generator but insists on 99.999% (10ppm maximum remaining oxygen content) purity unless it can be proven that a slightly higher oxygen content gas will achieve exactly the same results, even though the acceptable oxygen level within the finished pack would typically be in the region of 2%.

Parker appreciates this stance and fully understands that for food producers there is a lot at stake in getting it right. However, considering using purchased gas at typically 10-20 ppm purity, does switching to generated gas at say 0.5% change the 2% MROC achievable in the finished pack?

In reality, it doesn’t and the reason for this is that it is almost impossible to flush all of the air out of the packs as they are rapidly and continuously formed within the packing machine, so some oxygen content from the residual ambient air always remains. Secondly, as the product is dropped into the pack from the multi-head weigher through the filling funnel, it pulls in ambient air, thus introducing a little more oxygen into the pack.

One possible way of confirming the suitability of an on-site supply of food grade nitrogen at various purities to establish the most suitable would be to install a small nitrogen generator system to run on a trial basis. This however in most instances is not logistically or physically viable.

 

Case study

Optimum Nitrogen Gas Purity for Food Packaging Applications - NitroSource Nitrogen Generator - Parker GSFERecently Parker UK was faced with the dilemma where a high-quality coffee producer desperately wanted to convert from an expensive and problematic long-standing bulk liquid supply to a NITROSource PSA on-site solution. The producer fully understood the huge cost savings that could be enjoyed by specifying 0.5% purity as opposed to 10ppm but wanted absolute proof that their reputation and produce would not be jeopardised by the change in purity.

To overcome the problems associated with the installation of a full-scale trial unit, Parker's nitrogen generation manufacturing GSFE Division UK and the Local UK Parker sales company devised a solution to introduce a small, fully variable quantity of food grade compressed air into the existing high purity nitrogen supply, thus enabling the ability to increase the MROC to any desired level. A calibrated independent oxygen analyser was installed at the device outlet to constantly monitor O2 levels.

A series of tests were carried out on one packing line where the device was installed and the producer’s quality assurance department was on hand to oversee the trial and sample the finished packs using a calibrated bench top pack analyser for MROC.

The machine was run at its standard 36 bags/min first with only the 10ppm liquid supply and then 2 levels of raised oxygen gas at 0.1% and 0.5% achieved through a small bleed in of food grade compressed air.
 

Optimum Nitrogen Gas Purity for Food Packaging Applications - Batch Sample O2 Level - Parker GSFE
 

As can be seen from the table of results, there was virtually zero difference between the gas purities with regards to MROC in the pack and the target O2 level was maintained well below the limit.

The test was evaluated by the producer's decision-making team and a twin bank NITROSource PSA system was duly ordered and installed to fulfill the demand of the entire factory.

Interesting to note that on the day of change over from the existing liquid supply to Parker generated gas, the operatives and QA department were not informed so as to execute a blind test. We are happy to report that the system actually ran for 3 weeks without any detected difference before the parties concerned were eventually informed!

Considering the total cost of ownership including energy, maintenance and capital expenditure, the entire system is expected to realise pay-back within 2 years and reduce cost by up to 75% thereafter.

Now, watch this video to learn more about NITROSource:

 

 

Optimum Nitrogen Gas Purity for Food Packaging Applications - NitroSource Brochure - Parker GSFEFor additional information on Parker NITROSource gas generators, download the product brochure. You can also contact Phil Green, the author, directly: phil.r.green@parker.com

 

 

 

 

 

Optimum Nitrogen Gas Purity for Food Packaging Applications - Phil Green - Parker GSFEThis post was contributed by Phil Green, industrial gas application and training manager, Parker Gas Separation and Filtration Division EMEA. 

 

 

 

 

Related posts

The Importance of a Food Grade Compliant Nitrogen Gas Supply

Nitrogen: A Cost Effective Way to Extend Food Shelf Life

Modified Atmosphere Packaging with a Nitrogen Generator

Nine Reasons To Consider On-Site Nitrogen Generation

Simple Safety Steps to Follow When Installing a Nitrogen Generator

Top Frequently Asked Questions About Nitrogen Generators

Optimum Nitrogen Purity for Modified Atmosphere Food Packaging

Read More

How to Distinguish a Process Water Cooler from a Chiller - industrial plant - Parker Gas Separation and Filtration Division EMEA There are numerous manufacturers in the water cooler market. Water coolers are also called chillers but it is important to draw a clear distinction between process water coolers and chillers for industrial or non-industrial cooling applications.

Many people think that all chillers for the industrial manufacturing sector are the same but there is a risk of making a huge error of judgment which could have an impact on the final choice for the application.

 

Chiller market

 

How to Distinguish a Process Water Cooler from a Chiller - Water Chiller Market - Parker Gas Separation and Filtration Division EMEA

When referring to cooling and climate control systems, we mean systems that can control both the temperature and the humidity level of a space. They are usually used for cooling rooms, electrical cabinets or other places where the water cooling temperature does not have to be precise and constant.

Chillers for cooling process water, on the other hand, are compression water cooling units that can be sub-divided, depending on the fluid used for the cooling of the condenser, into air-cooled and water-cooled. The most common cooling power range for installed systems is between 2 and 750 kW.

Process coolers for industry provide a high and constant degree of precision of the output water temperature (in all atmospheric conditions) and keep the fluid clean to prevent damage to the end user. In fact, process chillers are used to cool industrial machinery that requires the cooling fluid to be uncontaminated and at a precise and constant temperature. For example, in all of the hydraulic circuits of machines, if the oil temperature exceeds a certain limit, the machine shuts down with a resulting loss of productivity. Therefore, precise and constant cooling is both necessary and crucial for speeding up and improving production processes. When there is a need for accuracy and a water temperature lower than the ambient temperature, precision process coolers offer the only solution. A precision cooling chiller is a machine designed to cool water using a cooling circuit. It is a closed circuit which must ensure:

  • No waste of the cooling fluid.
  • No control of outlets.
  • Control of the water quality.
  • Modularity: possibility for expansion.
  • Complete flexibility.
  • Water temperature can be set.
  • Independence from ambient conditions.
  How to Distinguish a Process Water Cooler from a Chiller - Hyperchill Plus - Parker Gas Separation and Filtration Division EMEA Applications requiring cooling capacities from 2kW to 24kW

Parker's Hyperchill Plus industrial water chiller is compact, easy to use, safe and reliable in all operating conditions — guaranteeing precise and accurate control of the water temperature. Cooling capacities range from 1.7kW to 23.6kW. The availability of a wide range of accessories and options makes Hyperchill Plus an extremely flexible solution which can satisfy demands in all industrial applications. Thanks to the non-ferrous hydraulic circuit, Hyperchill Plus ensures stable operating conditions, maintaining the highest possible quality and cleanliness, which has an ensuing positive impact on the efficiency and productivity of the process, reducing maintenance costs and system downtime. Each individual Hyperchill Plus is extensively tested in the factory to guarantee the highest possible levels of efficiency and reliability in all operating conditions.

 

Applications requiring cooling capacities from 28kW to 360kW

Parker's Hyperchill range of water chillers is designed specifically for industrial applications. Advanced solutions, the utmost attention to detail and a highly sophisticated production process have resulted in a compact, reliable and easy-to-use product that offers flexibility in a variety of conditions as well as precise control of the water temperature. The high level of efficiency and low operating costs make Hyperchill the perfect solution for the modern industry.

Parker is the leading supplier of water coolers for production processes which offer complete ease of use and a high degree of operational reliability thanks to the use of the latest technologies and the availability of a vast array of versions and accessories. The Parker liquid coolers range represents a simple but effective solution to most common problems arising from the use of water. The chart below contains general technical specifications.

 

How to Distinguish a Process Water Cooler from a Chiller - Hyperchill Technical Specifications - Parker Gas Separation and Filtration Division EMEA

 

How to Distinguish a Process Water Cooler from a Chiller - HyperChill Plus product bulleting - Parker Gas Separation and Filtration Division EMEATo learn more about Hyperchill Plus download the brochure

 

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller - Compressed Air and Gas Treatment Solutions - Parker Gas Separation and Filtration Division EMEAFor information on Parker's complete compressed air and gas treatment solutions including the Hyperchill range of water chillers, download the brochure.

 

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller - Fabio Bruno, application engineer_Parker Gas Separation and Filtration Division EMEAThis article was contributed by Fabio Bruno, compressed air purification, gas generation & process cooling application engineer, Parker Gas Separation and Filtration Division EMEA.

 

        Related content

Sizing a Chiller for Your Application - What You Need to Know 

Why You Need a Maintenance Plan for Manufacturing Equipment

Protect Your Process from Mycoplasma Contamination

Filtration Technologies and Key Markets

 

 

 

 

 

How to Distinguish a Process Water Cooler from a Chiller

Read More

Why Are Coalescing Filters Installed in Pairs?_Compressed Air Lines_Parker GSFEIn an industrial manufacturing plant, coalescing filters are probably the most important piece of purification equipment found in a compressed air system. They treat six of the ten main contaminants found in compressed air (atmospheric particulate, rust, pipe scale, micro-organisms and aerosols of oil and water). But more importantly, they are also used to protect refrigeration and adsorption (desiccant) air dryers from contamination.

This blog compares the benefits of installing a pair of coalescing filters in series versus a 2 in 1 filter in terms of differential pressure, dirt holding capacity, and total cost of ownership.

Coalescing filters are usually installed in pairs but why is this so? 

Typically, coalescing compressed air filters are installed close to where the compressor is located (either in the compressor room on larger installation or on the compressor itself for smaller fixed or portable compressors). 

In order to effectively reduce the aerosols of oil and water, micro-organisms and particles to a level that will protect the compressed air dryer requires the use of a fine filter (treating contaminants down to 0.01 micron).  

Why Are Coalescing Filters Installed in Pairs? Clogged Filters_Parker GSFE DivisionThe particulate found in a compressed air system is of varying sizes and as this filter is very fine, it will block rapidly with large particles (especially rust and pipe scale).

As the filter blocks, the differential pressure across the filter increases. This not only reduces the available pressure downstream, it also requires the compressor to generate the compressed air at a higher pressure, resulting in higher operating costs.

Why Are Coalescing Filters Installed in Pairs?_Pressure-Drop-Graph_Parker GSFE DivisionOn average, it is found that for every 1 bar additional generation pressure there is a loss of 7% in specific energy, therefore keeping pressure losses low helps reduce operating costs.

Running a compressed air filter with high differential pressure is therefore very costly and keeping pressure losses as low as possible is imperative. One way to keep the pressure losses low is to change the filter element on a frequent basis (every 3-6 months). Another way is to oversize the filter; however, making a filter too large has its own issues in terms of filtration performance, purchase cost and installation. Neither way is a cost-effective compressed air treatment solution. 

Why Are Coalescing Filters Installed in Pairs? domnick hunter Coalescing Filters_Parker_GSFE DivisionIf the fine filter could be protected, the pressure losses could be reduced, therefore the most cost-effective solution is to install a pair of coalescing filters in series. 

Each filter will reduce the same 6 contaminants but to differing levels of purity. The first filter, a general purpose filter protects the second, a high-efficiency filter from bulk contamination. This not only improves filtration performance but more importantly, reduces pressure losses and operational costs. Additionally, it also extends the service life of the element from 3-6 months to 12 months.

 

Are there alternatives to the 2 filter installation?

Yes, there are single filter alternatives, but care has to be taken with this type of filter as they do not always provide the perceived benefits. 

2 in 1 filters

In an attempt to reduce the pressure losses associated with compressed air filters, a number of manufacturers are now offering 2 in 1 filters. These are claimed to reduce the pressure losses associated with having two filter housings (and therefore energy consumption) whilst providing the same level of purification (i.e. particulate retention & oil carryover down to 0.01 micron / 0.01 mg/m3 or lower). In theory, the thought process is a sound one, however, these types of filter do not always deliver in practice.

Understanding differential pressure (dP) 

In a compressed air filter, pressure losses are a combination of fixed pressure loss and incremental pressure loss. Fixed pressure losses are designed into the filter from the beginning and come from the filter housing and element endcap designs whereas incremental pressure losses come from the filter element as it starts operating. Pressure losses for compressed air purification equipment are stated as dP or differential Pressure.

Literature dP is often used to select one filter brand over another, however many users are unaware that this data is only indicative of a filter in a clean, “as new” condition and does not indicate how a filter blocks as it operates.

When selecting a filter, its blockage characteristics must also be considered as this is an indication as to the filters dirt holding capacity (and true operational cost). 

Therefore, to show the real performance of the 2 in 1 type of filter and the true benefits of their new OIL-X filter range, a comparative test between a pair of Parker domnick hunter OIL-X coalescing filters (Grades AO + AA) and a single 2 in 1 filter was undertaken.

As the filters on test are coalescing filters, they were wetted out with oil aerosol (in accordance with ISO12500-1, the international standard for coalescing filter testing) to give an initial saturated dP representative of a new filter as it enters the first days of service. Oil carryover performance was also recorded.  

Results of the initial ISO12500-1 testing showed that whilst the OIL-X AO + AA combination achieved the claimed literature performance for oil carryover and initial wet dP, the 2 in 1 filter oil carryover performance was 87% higher than literature claims and initial saturated dP 5% higher. 

The second test determines the dirt loading characteristics of the two offerings by injecting and diffusing equal amounts of test particulate into the air stream and measuring the dP (this is done 12 times to simulate monthly particulate loading).

So whilst the initial performance of the two filters may look similar in literature, actual dirt load testing indicates otherwise as can be seen in the graph. Testing confirms that a pair of Parker domnick hunter OIL-X filters have a much higher dirt holding capacity than the 2 in 1 filter and will, therefore, have significantly lower operational costs. 

Why Are Coalescing Filters Installed in Pairs?_Dirt Holding Capacity Chart_Parker GSFE Division

Financial implications 

From the test data, true operational costs can now be calculated and the table below shows the financial savings available by installing a pair of Parker OIL-X filters over a 2 in 1 filter.

Why Are Coalescing Filters Installed in Pairs? Energy and Operational Costs OilX Filters_Parker GFSE Division

Based upon 37kW compressor / Cost of electricity £0.10. Parker OIL-X savings will be greater with larger filter/compressor combinations.

Total cost of ownership

The table highlights operational costs, however, when selecting compressed air purification equipment, the total cost of ownership (TCO) should always be considered (purchase price / operational costs/maintenance costs). The initial purchase price for the two Parker OIL-X filters is only 26% higher than the 2 in 1 filter whilst a pair of Parker OIL-X filter elements is 42% lower than a single element for the 2 in 1. As the 2 in 1 filter has a lower operating lifetime than OIL-X, it may require 2 element changes per year in which case the pair of OIL-X elements is 183% lower cost than a pair of 2 in 1 elements. What seems like a low-cost alternative may turn out to be a costly investment. 

Why Are Coalescing Filters Installed in Pairs? OILX Filters_ Parker GSFE DivisionParker domnick hunter OIL-X filter range

The new OIL-X filter range is the latest addition to Parker's comprehensive line of compressed air and gas treatment product solutions. The new OIL-X technology has been designed to carefully balance the need for precise compressed air quality with the need for low dP, low energy consumption and low lifetime cost.

Parker domnick hunter OIL-X filters incorporate unique flow management devices to significantly reduce the pressure losses associated with poor housing designs whilst their filter elements use airflow management technology, specially selected filtration media, energy efficient coatings and unique deep pleated element construction. This not only ensures air quality, it also provides a high dirt holding capacity, culminating in a filter element dP that starts low and remains low for the 12-month lifetime of the filter element.

All Parker domnick hunter OIL-X filtration grades have performance 3rd party validated by Lloyds register in accordance with international standards and are backed up by an air quality guarantee.

 

Why Are Coalescing Filters Installed in Pairs?_Focused On Compressed Air Treatment Brochure_Parker GSFE DivisionFor more information on Parker's compressed air treatment solutions, download the brochure.

 

 

 

 

 

 

Why Are Coalescing Filters Installed in Pairs? Mark White, compressed air treatment applications manager_Parker GFSE DivisionThis blog was contributed by Mark White, compressed air treatment applications manager, Parker Gas Separation and Filtration Division, EMEA.

 

      Related content

10 Contaminants Affecting Your Compressed Air System - Part One

10 Contaminants Affecting Your Compressed Air System – Part Two

Compressed Air Treatment Solutions for Today's Manufacturing Plants

Seven Myths About Oil-Free Compressors
 

Why Are Coalescing Filters Installed in Pairs?

Read More

Simple Safety Steps to Follow When Installing a Nitrogen Generator - Bottle filling - Parker Gas Separation and Filtration Division, EMEAA question that is frequently asked when considering the installation of a nitrogen gas generator is "will the system create an oxygen rich or oxygen deficient atmosphere that could be potentially hazardous?"
 
In most instances, it is widely recognised that a nitrogen generator provides a safe, low pressure, ambient temperature, flow of nitrogen without the serious concerns associated with traditional methods of supply such as the manual handling of heavy cylinders and large stored volumes of potentially asphyxiating gas.
 
This blog discusses some simple basic key points that need to be addressed to ensure that a Parker nitrogen gas generator installation is safe to operate and maintain. 
 
The exposure limit for oxygen within the workplace is a minimum of 19.5% and a maximum of 23.5% according to European Industrial Gases Association, (EIGA) and the Occupational Safety and Health Administration, (OSHA). At sea level, oxygen forms 20.9% of the Earth's atmosphere.
 
Simple Safety Steps To Follow When Installing a Nitrogen Generator_Earth's Atmosphere_Parker Gas Separation and Filtration Division, EMEA
 
A nitrogen generator, typically either membrane or PSA technology, uses compressed air to produce nitrogen gas by removing the constituent atmospheric oxygen content. This could have the potential to alter the ambient levels of oxygen within the installation site or at the point of use in some of the following ways:
 
  • The exhaust or permeate contains oxygen that is vented to atmosphere as part of the normal process to produce nitrogen, possibly increasing the ambient oxygen level.
  • Nitrogen could leak from buffer or process vessels and pipe-work within the installation area, possibly reducing the ambient oxygen levels.
  • Automatic or manual venting of "off-specification" nitrogen during commissioning or purity control, possibly reducing the ambient oxygen levels.
  • Safety pressure relief valves on pressure vessels could vent nitrogen on over-pressure situations, possibly reducing the ambient oxygen levels. 
  • At point of use, nitrogen could be vented into the workplace as a normal part of the application or process, possibly reducing the ambient oxygen levels.
  • Depressurisation by venting nitrogen vessels during servicing or inspection, possibly reducing the ambient oxygen levels.
Although the ambient level of oxygen could be changed and fall outside of the safety limits in each of the scenarios above, in an adequately ventilated environment this normally doesn't occur.
 
The reason for this and the explanation as to why oxygen and nitrogen do not settle into ambient layers or high/low oxygen gas "pockets" is through a process called "diffusion" created by the random motion of gas molecules.
Oxygen and nitrogen are very similar in density (oxygen is 1.331kg/m3 and nitrogen 1.165kg/m3 @ 20ºC, 1013 millibar absolute), and therefore diffusion is extremely rapid. This phenomenon combined with normal conduction/convection currents and air movement occurring within a building ensures a return to the perfect gas mixture at sea level of 20.9% oxygen / 78% nitrogen.
 
The really important consideration is adequate ventilation to provide enough fresh ambient air, allowing complete diffusion to rapidly take place and negate any possibility of oxygen concentration or depletion.
 
"Consideration should be given in building ventilation design to accommodate possible accumulation of product or waste gases. Adequate ventilation shall be provided to prevent localized oxygen-deficient or oxygen-rich atmospheres. As a guideline, the building should have a minimum of six air changes per hour." 
— European Industrial Gases Association, (EIGA)
 
During the design of plant rooms and factories, heating and ventilation systems are normally sized and installed to suit the operational requirements.
 
Typical room volume change demand per hour data is available from many sources and some values obtained online are detailed below.
 
 Compressor/boiler rooms  15-20                       Manufacturing factories  10-15  Machine shops  6-12  Foundries  15-20

During normal operation, a Parker nitrogen generator should not vent any significant volumes of oxygen or nitrogen gas within the installation location as long as the area is adequately sized and ventilated. This obviously depends on quite a few factors including but not limited to - the free volume of room where the system is installed or gas used within, potential exhaust/permeate flow, possible nitrogen vent capacity, and room ambient air volume change rate.

What can be done to mitigate the potential for oxygen depletion or enrichment? Leaks 
Check pressure vessels, pipe-work, equipment and connections during installation and subsequent service periods to ensure that the system is completely gas-tight.
 
Exhaust/permeate venting
A common misconception is that the waste gas from a generator is 100% oxygen. This is not the case and in the instance of Parker membrane technology the permeate stream is typically up to 40% O2 and with Parker PSA generators a peak of between 35% to 45% typically occurs at the point of cycle change over. It may be possible to pipe the exhaust gas to an outside open location in certain instances in which case it is important to keep the vent pipe run as large a diameter and as short as possible to prevent any back pressure stopping complete regeneration/sweep of residual oxygen. Obviously, the nearer the equipment is sited to an outside wall, the better.
 
Safety valves
In certain circumstances, safety pressure relief valves fitted to pressure vessels are required to be piped to an outside location. Threaded outlet port variants are used to make it easier to attach pipe-work to facilitate this. Again, the nearer the vessels are sited to an outside wall or suitable vent location, the better. 
 
Pressure vessel venting during inspection/servicing

Ensure adequate ventilation and set vessel vent flow to ensure no oxygen depletion occurs. Alternatively, fit a suitable flexible hose of the correct pressure rating to the vessel drain connection and vent to a safe location.

Labelling and warning notices 
Simple Safety Steps to Follow When Installing a Nitrogen Generator- Nitogen Tanks- Parker Gas Separation and Filtration Division, EMEA Warning labels must be installed in prominent locations on plant rooms, equipment, vessels and pipe-work to inform personnel of the possible presence of nitrogen gas. This labeling should also be positioned and spaced on all equipment, vessels and pipe-work so that it is visible, readable and clear from all directions that nitrogen gas is present, preventing wrongful connection resulting in possible contamination or potentially harmful/fatal usage of the gas; for example, connection to breathing air systems.
 
  Off-gas bypass vent and point of use venting
Depending on the generator model/point of use application, Parker has the relevant information and formulae to calculate specific requirements available upon request.
 
Ambient room analysers 
Simple Safety Steps to Follow When Installing a Nitrogen Generator- Ambient Room Analyser- Parker Gas Separation and Filtration Division, EMEAIf there is any doubt whatsoever as to the oxygen content of a specific location, especially in confined areas or where ventilation criteria is unknown, then a simple but effective solution is to install an ambient room analyser. These work by having a sensor or multiple sensors installed within the area where oxygen depletion or enrichment may occur, connected to an audible/visible alarm indication unit. Generally, there is alarm indication both inside and outside of the area in question so as to prevent entry to the location in the first place or to warn should an out of specification oxygen situation arise while working within the location. There are many suppliers of these type of alarm units and obviously, the manufacturer's instructions should be fully adhered to when installing, operating and maintaining them as they are a critical safety device.
 
The information contained within this blog post is offered as a guide only to elicit thought and discussion. It is not exhaustive. There are many site conditions that can influence the overall safety of a gas generator installation and it is the responsibility of all parties concerned in the design, selection, installation, commissioning, operation, maintenance and usage of a gas generation system to ensure it is fully compliant with all relevant safety, operational standards and legislation. Each application should be assessed on its own merits. Please use Parker's extensive experience to discuss your specific requirements. We are only too pleased to help!
 
Parker has extensive experience and knowledge developed over the past 30 years, with tens of thousands of safe, successful nitrogen generator installations operating globally. In reality, a correctly ventilated plant room or factory provides an ideal location for a Parker nitrogen generation system. If there are any concerns or questions, Parker can provide help and advice including mathematical formulae to calculate exactly what is required with regards to a safe installation, even in ISO container or similar, small modular style plant rooms. Please contact phil.r.green@parker.com for further information. For more information on Parker nitrogen generation systems, please visit our website.
 
 

 

Simple Safety Steps to Follow When Installing a Nitrogen Generator

Read More

 

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Fork-Lift_Parker Engine Mobile Aftermarket DivisionReducing routine service intervals is an important objective of any fleet manager. Preventing unscheduled maintenance is even more critical to keeping heavy-duty trucks and equipment operational. Methods and innovative product solutions that guarantee trouble-free operation offer tremendous value in ensuring productivity and customer satisfaction. Proper air filtration is paramount to preventing contamination from reaching the engine. Even the smallest amount of dirt can cause a huge amount of engine damage resulting in unscheduled, costly downtime and failure. When choosing an engine air filter, considering these factors will help ensure the best possible performance and engine protection:

  • Performance testing
  • Efficiency, capacity, structural stability and media strength
  • Reputation of the manufacturer
The importance of performance testing

An air filter must be highly efficient at capturing contamination throughout the full life of the filter. This makes structural stability and media strength critically important. Contaminant by-pass (going around, not through the media), failed seals or adhesives and microscopic holes in the media itself will render a filter practically useless. Rigorous testing under extreme conditions for longer than the typical service interval is an excellent indicator of how a filter will perform in its intended application.

Advances in air filtration technology Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_EnduraPanel Quote_Parker Engine Mobile Aftermarket Division

Parker Engine Mobile Aftermarket Division has recently introduced a revolutionary new air filter technology, the Baldwin EnduraPanel™. EnduraPanel air filters combine high efficiency and maximum capacity in an extremely rugged, compact design that is up to 50 percent smaller than conventional engine air filters.

"EnduraPanel's single and dual element designs provide the maximum amount of filter media with ample air flow, even when space is at a premium." 

— Steve Zimmerman, head of product management and engineering, Parker Engine Mobile Aftermarket Division

 

 

 

Performance under the harshest conditions

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_EnduraPanel_Parker Engine Mobile Aftermarket DivisionEnduraPanel filters have been designed to withstand extreme conditions, such as vibration and high temperatures, for extended periods without rips, tears or structural failures — providing exceptional protection to heavy-duty trucks and equipment.

These filters deliver superior efficiency throughout the entire service interval with dirt holding capacity surpassing the OE filters. Even more importantly, structural endurance testing shows how Baldwin EnduraPanel exceeds the OE in durability. Baldwin filters protect equipment throughout the filter life, even under the toughest working conditions. See figures 1-3. 

 

Figure 1. Capacity (g) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_CapacityTest-EnduraPanel_Parker Engine Mobile Aftermarket Division

Figure 2. Efficiency (%) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Efficiency-Test-EnduraPanel_Parker Engine Mobile Aftermarket Division

Figure 3. Structural Endurance (Cycles) Baldwin EnduraPanel PA31010 vs. OE

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Structural-Endurance-Test-Endura-Panel_Parker Engine Mobile Aftermarket Division

Parker Engine Mobile Aftermarket Division

As a global provider of filtration products and services, our mission is to protect our customers’ engines and mobile equipment, from first to last use, through innovative filtration solutions and outstanding customer service. We have a worldwide customer base, superb product quality, an extensive distribution network and the industry's broadest product line. This comprehensive portfolio of filtration products and technologies offers customers a single streamlined source for all their engine and mobile filtration needs.

For additional information on the Baldwin EnduraPanel, please visit our website.

 

Advances in Engine Air Filtration Technology for Heavy-Duty Trucks_Fork-Lift_Parker Engine Mobile Aftermarket DivisionThis blog was contributed by Steve Zimmerman, head of product management and engineering, Parker Engine Mobile Aftermarket Division.

 

 

 

 

 

Related content

Bringing Tomorrow's Filtration Technology to the Commercial Vehicle Aftermarket

How to Protect Your Engine with Filtration in the Truck and Mobile Aftermarket

Filtration Technologies and Key Markets

Exploring Engine Filtration Today and In the Future

 

 

Advances in Engine Air Filtration for Heavy-Duty Trucks

Read More

Filtration and Biopharmaceutical Process Protection_Parker Bioscience_Murus FilterEffective filtration is vital to process protection and factors such as filter selection, testing and optimization can have an impact on process risk. Here we examine the factors to consider when implementing normal flow and tangential flow filtration systems into biopharmaceutical manufacturing processes in order to maximize process protection. 

Filtration and Biopharmaceutical Process Protection_Parker Bioscience Division_View on Demand Icon
 
 
 
 
 
 
 
Normal flow filtration

With normal flow filtration, the selection of an appropriate filter for the product stream at any given point will primarily be driven by the level of retention required.

In some circumstances, a highly retentive filter such as PROPOR MR may be required to remove diminutive organisms such as mycoplasma from process fluids. However, implementing an extremely retentive filtration step where it is not required will only create an additional burden on the process.

It is therefore important to understand precisely what is appropriate at each stage.

Sterilizing-grade filters such as PROPOR SG and PROPOR HC ranges are frequently employed, and correctly so in many aspects of biopharmaceutical production. However, employing a sterilizing-grade filter where only bioburden control is needed will require an oversized filter stage: this may potentially restrict the process and will create the need for additional filter integrity testing steps.

In many cases, downstream processing stages are not truly sterile — chromatography being the prime example — and therefore in this example, a bioburden control filter such as PROPOR BR will provide sufficient process protection without risking unnecessary additional process operations.

Integrity testing protocols should be designed to provide assurance of filter integrity in accordance with regulatory requirements, but must also be balanced against introducing further process risk. Additional flushing and testing operations may confirm that the filter is still fit for purpose but they can also create a risk of contamination. In addition, from a product safety perspective, the data provided may be redundant when further post-use integrity testing is performed anyway.

Vendor assistance should be requested during filter sizing exercises. The filter supplier may be able to offer additional experience, which can be brought to bear in advising on a specific filter and application pairing: this may not be immediately apparent if the operator only relied upon data from a single bench top capacity study, which would not take into account the effect of long-term process variation upon filter performance.

Operating and testing procedures should be designed to deal with troubleshooting aspects of filter use. If, for example, a filter blocks prematurely due to process variation, or if an integrity test fail result is returned, are these eventualities written into the operator protocols? And has the vendor provided input regarding best practice in each case?

Tangential flow filtration

When utilizing tangential flow filtration, the membrane cut-off used to achieve the appropriate degree of retention or transmission is clearly important.

However, it is always good practice to ensure that the process has been optimized to provide repeatable performance under defined operating conditions. For example, faster processing or better membrane recovery can be achieved through optimization studies. If these studies are not performed, this may have a detrimental effect on process efficiency or even quality.

Module format should also be considered: cassettes and hollow fibres are commonly used but may provide advantages in certain situations arising from process needs.

In some applications, aseptic closed-loop processing may be highly beneficial. For example, some vaccines are too large to be sterile-filtered and therefore processing in a pre-sterilized single-use system is ideal. This means that gamma-stable cross-flow elements with very low extractables content, such as the single-use PROPOR TFF product, are very beneficial.

In any application, process systems should also be designed to maximize product yield through the elimination of unnecessary tubing or pipework and minimizing any potential for product to be lost within the process.

Finally, sterilization methods should be considered. If gamma irradiation is used, a product such as Parker Bioscience’s single-use PROPOR TFF element is required. On the other hand, if autoclave sterilization or caustic sanitization are implemented, products such as the PROPOR TFF autoclavable or reusable elements would be appropriate.

 

Now watch our webinar to find out more about how to protect your biopharmaceutical manufacturing process. 

Filtration and Biopharmaceutical Process Protection_Parker Bioscience Division_View on Demand Icon
 
 
 
 
 
 
 
 
 
 
 
Filtration and Biopharmaceutical Process Protection - Andrew Kelly, filtration product manager - Parker Bioscience

This post was contributed by Andrew Kelly, filtration product manager - life sciences, Parker Bioscience Division, United Kingdom.

Parker specializes in automating and controlling single-use processes. By integrating sensory and automation technology into a process, a manufacturer can control the fluid more effectively, ensuring the quality of the final product. Find out more atwww.parker.com/bioscience.

 

 

 

Related posts

How to Select the Right Filter for Your Bioprocess

Why You Should Consider Hollow Fibres for Ultrafiltration

Effective Filtration of Biopharmaceutical Buffers

The Role of Prefiltration in the Optimization of Bioprocess Filtration Systems

How to Scale-up Pharmaceutical Filtration Systems | Case Study

Filtration and Biopharmaceutical Process Protection

Read More