Latest Blog Posts
  • Combating Salt in Gas Turbine Applications for Offshore Oil and Gas - Turbine blade close up - Parker HannifinSalt is one of the most troublesome contaminants for gas turbine operators. In the offshore/coastal environment or indeed anywhere close to bodies of saltwater, corrosion of turbines can be swift and severe if airborne salts are not adequately understood and properly filtered. Salt removal is one of the areas that needs to be understood and defined. 

    The enormous amount of air a gas turbine consumes means even the smallest percentage of salt can have serious consequences. Over time, advanced filtration systems have moved from offering 95% salt removal efficiency to today, greater than 99.9%. This 5% difference seems small but is very significant in terms of the reliability and performance of the turbine.

    Salt is perilous to gas turbines for two main reasons;

    • Firstly, the sodium within it can mix with the sulphur from the fuel to create an effect known as sulphidation (also known as sulphidization or hot corrosion). A chemical reaction between the sodium and the sulphur creates molten sodium sulphate (Na2SO4) which attacks and corrodes the base metal of the turbine blades. Adding in the heat from combustion (which acts as a catalyst), this corrosion effect is accelerated, very quickly eating away at the clean, smooth surfaces of the turbine blades, potentially leading to catastrophic failure of components. If sour fuels are used, the high level of sulphur in them will further increase the rate of sulphidation. 
    • Secondly, chlorine from the salt can act as a pitting corrosion initiator in the colder compressor end of the turbine. 

    To rub further salt into the wounds, the hygroscopic/sticky nature (has an affinity for water and absorbs moisture from the surrounding air) of salt when in moisture-rich environments means it easily adheres to the compressor and turbine blades; increasing the rate at which contaminants build up on the surfaces and so more quickly impacting the aerodynamic performance of the turbine and its overall thermal efficiency. Below 40% relative humidity (RH), salt appears in dry form. Above 75% RH, it is in a liquid form. In between these states, salt exists in a particularly problematic, damaging wet and sticky form.

      A bit of history on measurement

    How much salt is in the air was defined by the National Gas Turbine Establishment (NGTE) 30 knot aerosol standard back in the 1970s? Based on the amount of salt present in a series of air samples collected by the UK Royal Navy in the North Atlantic, this figure was set at 3.6 ppm (parts per million). Unfortunately, 3.6 ppm is very high and not a realistic appraisal of the true offshore environment. This was recognised by the NGTE at the time and was only ever meant to be an interim measure until more detailed test information became available. Less salt in the air is of course a good thing, however, it is also key that GT operators have a realistic view of how much salt is in the air in order that they may correctly specify filtration systems that limit the amount reaching the inside of the machine. This anomaly prompted Parker Hannifin, to carry out an ASME paper research project back in 2004, resulting in a new ppm figure for ambient air salt concentration and size distribution in the marine environment. This revised figure, now known as the McGuigan Marine Boundary Layer (MMBL), provides a conservative, realistic figure for the average salt levels in the lower marine boundary layer (MBL) throughout the world. Still a realistic measure today, it puts the salt level at 0.1067 ppm.

     

    Each percentage point counts

    The more contaminants that are allowed through to the turbine, the quicker its aerodynamic efficiency will reduce and the greater the risk of damage to the machine. Ultimately this reduction in performance will result in reduced power output, lower system availability and reliability, and higher maintenance costs.  

    Unlike contaminants that cause compressor fouling (and can be cleaned away by water washing), one of the major problems with salt corrosion is that its effects are often not perceived in turbine performance data until something actually breaks. Unscheduled maintenance can be significant but, in many mechanical drive applications, the cost of lost productivity can also be huge.

    If a turbine consumes 350,000 kg of air per hour (typical 30MW GT) and there is 0.1607 ppm of salt by weight in the air to start with (1ppm(w) = 1mg/kg), this equates to an unfiltered gas turbine exposure of nearly 300 kg of salt per year for an 8000hr operating year!.  This means each 0.1% improvement in filtration efficiency protects the turbine from an extra 0.3 kg of salt exposure per year. 

     

    Designing a filter for salt removal

    Salt can exist in a solid, a liquid or a sticky in-between state. Changes in relative humidity affect the state of solidity of the salt. As a liquid salt droplet is transformed through drying to a solid particle, it will also contract to about 25% of its original size. To handle salt effectively, a filtration solution needs to allow for input concentration, aerosol size distribution and aerosol physical state; whether droplet, dry particle or any in-between/sticky state. 

    A filter system also needs to provide this protection without getting easily blocked itself. The right solution for a given application therefore also has to consider the impact of increased pressure drop from multiple filtration stages with the Gas Turbine salt protection needs and must be designed to handle and remove both salt phases in order to properly protect the turbine. Dust filters will capture solid dry salt particles. Liquid removal stages and hydrophobic filters prevent salt from attacking the turbine internals in liquid form. 

    One of the vital elements in handling salt corrosion in offshore and coastal environments is to effectively handle the moisture in the air. Filter media with high dry particulate efficiency ratings may not necessarily be effective at handling liquid droplets. Coalescers can manage free moisture and salt in liquid form (brine) by agglomerating droplets to make them larger and heavier so they will fall out of the airstream. Although traditionally associated with large maintenance overheads, coalescers are now available that will run for extended periods without sudden pressure spikes and in configurations that can be easily cleaned with a water or air hose.

    Dry salt particles can be dealt with by high efficiency (HEPA/EPA) filters but care needs to be taken with media selection to ensure these filters are not quickly blocked by moisture or sticky salt particles. Tests in real-world applications have shown that thicker glass fibre media is less prone to blockage in such environments than ePTFE membranes, which are 10 times thinner. Glass fibre media with effective hydrophobic coatings have been shown to prevent virtually all liquid salt and/or sticky salt particles from entering the turbine. 

     

    How offshore installations are different

    For an offshore oil and gas installation, a multi-stage filtration system is required to handle the various, harsh environmental challenges faced. As space offshore is at a premium, it often makes sense to install a more compact, high velocity filter system with a multi-stage Vane Coalescer Vane (VCV) salt removal system. Stage one is an inertial vane separator that removes bulk water including rain, sea spray and coarse aerosols. This is followed by a coalescer that coalesces fine salt aerosols into larger droplets (>20 µm). This stage also captures fine dust and dry salt. The final inertial vane separator stage stops and removes the re-entrained larger salt droplets. 

    Comating Salt in Gas Turbine Applications for Offshore Oil and Gas - bucket corrosion - Parke rHannifin

     

     

     

     

     

     

     

     

     

    A traditional M6 (EN779) VCV inlet filtration system is a popular choice for offshore turbines and offers excellent wet salt and bulk water removal capability. However, at high air velocities (as the units are designed to be compact) these systems are typically limited to an F7 (EN779) dry particulate removal efficiency rating. If the environment is considered dusty then this configuration can have a limited filter life, produce high operating pressure losses and have reduced effectiveness against dry salts. As well as a need to replace filters on a regular basis, maintenance of the drain system on these units is also critical to operation, so overheads can be higher than desired. These VCV systems are therefore typically employed when salt is the main concern rather than a combination of salt and high dust levels. 

    To address issues that result from a combination of high concentrations of salt as well as high concentrations of dust, the latest high-velocity filtration systems are designed with extra filtration stages that provide very high small particulate removal efficiency with hydrophobic properties; meaning they prevent liquid penetration while still capturing fine (< 3µm) dust and dry salt particles. These F8 (EN779) to H13 (EN1822) rated high-velocity filters can also be configured with deeper glass fibre filtration cells (24” deep) which means that although turbine inlet air velocity is high, the air velocity at the media is similar to low and medium velocity systems. This increases filtration efficiency and reduces pressure loss across the system. The thicker filter media has the added benefit of being less prone to blockage than thinner, high-efficiency alternatives.

     

    Testing salt efficiency removal

    Ultimately, whatever the ppm of salt in the air inlet, the more that is removed the better the turbine is protected from deteriorating performance and catastrophic failure. However, salt leaching rates are not covered in standard efficiency tests (EN779, ASHRAE 52.2, EN1822, JIS Z8122). The only real test of the effectiveness of an inlet filtration system is the performance of the turbine over time in the variety of environmental conditions it faces. To simulate the real world, Parker (CLARCOR) created a hydrophobic salt test protocol to help determine salt removal efficiency and in order to correctly and realistically evaluate new filter system designs when they are subject to variations in salt concentration, dust concentration and relative humidity. Specifically designed to test for phenomena such as salt leaching, the test takes the filter through a total of nine wet/dry cycles in a ten-day testing protocol. 

    Combating Salt in Gas Turbine Applications for Offshore Oil and Gas  figure 3 Salt is Perilous to gas turbines - Parker HannifinThe test requires that the filter(s) are clamped and installed as they would be on site. This ensures that the seal and clamping system are not weak points in the unit where liquid and contaminants can bypass the filtering media itself. Salt is first introduced into the test as an aerosol. Repeated tests are then completed (10 days’ worth) when the filter is loaded with dust. This adds back pressure to the system while the dust coats the fibres within the media as it gets captured, simulating real-world particulate build up. This combination of salt aerosol and loaded filter is very important to analyze as captured dust often acts as an alternative flow path for wet salt transfer downstream, in effect acting as a shortcut for wet salt transmittal downstream, bypassing the media!

    Combating Salt in Gas Turbine Applications for Offshore Oil and Gas - Hydrophobic Test Rig - Parker HannifinTesting a filter system in this way provides comprehensive data about performance over time including the amount of water and salt that passes through the filter during various test stages and highlights any pressure loss increase that occurs. There are two widely used filter tests with accepted ratings used in the filtration industry – the EN779 standard and the EN1822 standard. The EN779 test standard has a set of criteria that a filter must meet to achieve a certain rating. Depending on the filter, a rating of G1-G4, M5-M6 or F7-F9 will be given. The higher the rating, the more effective (typically) the filter. The EN1822 standard is used to test higher efficiency filters, in the EPA/HEPA range, and produces a ratings scale of E10-E12, and H13-H17. When the multi-stage hydrophobic high-velocity system was tested against this salt test protocol, it showed salt removal efficiency to be improved by a factor of 10,000 compared with traditional M6 (EN779) units, giving an E11 (EN1822) efficiency rating with similar pressure loss to a standard M6 (EN779) efficiency system. Such units have also been proven to reduce the frequency of offline turbine water washes by up to a factor of 6 (from around four weeks to six months) without creating sudden pressure spikes.

     

    No single filtration solution is right for all installations

    Understanding the nature and impact of salt is a vital consideration in designing a filtration system for use in offshore or coastal environments. Systems need to be tested and evaluated for their performance in handling wet, dry and sticky salt to protect turbines from serious damage without sudden pressure spikes. If filters are selected solely on efficiency rating, operators may be left with systems that are difficult to maintain and, although higher rated, may not protect assets as well as lower efficiency solutions. With a careful assessment of conditions and selection of filter configuration, modern filtration solutions have been shown to virtually negate corrosion of turbine blades over 20,000 fired hours in real-world conditions.

     

    About Parker Gas Turbine Filtration Division

    Parker Hannifin supplies a full range of inlet systems and filters engineered to meet your operating goals, including: 

    • Higher power output.
    • Lower operating costs.
    • Proven performance utilizing advanced filter technology.
    • Extended gas turbine availability.
    • Maximum protection against corrosion and fouling.
    • Easy maintenance and change out.

    We are the choice for advanced filtration for new units and replacement filters. Our inlet system designs include self-cleaning (pulse) and static inlet systems for all gas turbine OEMs. We supply a full range of filter types at all efficiency levels. The predictable and reliable performance of our air filters significantly reduces compressor contamination and the need for unplanned maintenance. 

     

    Combating Salt in Gas Turbine Applications for Offshore Oil and Gas- Peter McGuigan - Parker Gas Turbine Filtration DivisionThis article was contributed by Peter McGuigan, global LNG market manager, Parker Gas Turbine Filtration Division. It was originally published in Gas Turbine World, September 2017.

     

         

    Other related and helpful articles on oil and gas applications:

    Defining Parker's Purpose

    Parker Solutions for Oil and Gas

    Learn more about applications solved by Parker solutions

    How to Avoid Gas Turbine Shutdowns in LNG Processing Facilities

    The Importance of Using the Right Filtration in LNG Production

     

     

    Follow Parker Filtration on LinkedIn - Parker HannifinFor the latest trends, best practices and practical engineering advice, follow Parker’s Filtration Technology page.

     

     

    • 27 Aug 2021
    Combating Salt in Gas Turbine Applications for Offshore Oil and Gas
    Salt is one of the most troublesome contaminants for gas turbine operators. In the offshore/coastal environment or indeed...
  • Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - Golar Hilli LNG Production Vessel - Parker HannifinFloating liquefied natural gas (FLNG) vessels are processing facilities that float above offshore gas fields. They treat and process natural gas using marine versions of the same technologies found on a land-based LNG plant -- only much more compact – floating LNGs are approximately 1/4 the size for the same LNG output. They offer operators the ability to process gas at or very close to the source field. The value of FLNGs is that they can tap into smaller and more remote fields. When a resource is exhausted, they can be unmoored and reconfigured for a new feed gas composition range and/or consumer non methane component specification and can be moved to another location to continue operations. 

    Offshore operation underscores the importance of maintaining the reliability of equipment on these vessels for extended periods. Operational shutdown of a key piece of equipment, such as a gas turbine (GT), can cost millions of dollars per day in lost production. Limited personnel and access to spare parts could mean further delays. Continue reading to learn more about the benefits and challenges of FNLGs as well as recommendations to ensure dependable GT operation.

     

    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - download the white paper - Parker Hannifin

     

    Find more information on filtration requirements for FLNG gas turbine air intake systems in our white paper “Fine-Tuning Filtration for FLNG".

     

          The benefits

    The benefits of operating and processing gas offshore, at source, using a nonpermanent structure are clear.

    • There is no costly subsea piping or compression stations required to move the gas to a shore-based facility for processing.
    • No need to reclaim or develop a suitable coastal site for processing, storage, and transmission infrastructure, including harbor facilities. This helps to alleviate environmental concerns and complexities with local community groups. It can also accelerate the permitting processes and reduce time to first production.
    • FLNGs facilities are more compact than land-based plants.

     

    The challenges

    Space is the biggest challenge facing FLNG engineers. LNG production requires a large amount of specialized equipment, including pretreatment systems, gas turbines, compressors, expanders, head exchangers, etc. Storage space for the LNG in its super cooled stage and natural gas liquids (NGLs) is also necessary. On top of that, all the systems and facilities needed for the ship and crew must be considered.

    In contrast to land-based sites where designs may be considered as field proven, layout optimizations, design experiences, and engineering best practices with regards to implementing FLNG production are still relatively new and are evolving. To date, only a handful of FLNG production vessels have been commissioned - Petronas’ FLNG Satu and Dua, Golar’s Hilli Episeyo, Exmar’s Tango FLNG, and Shell’s Prelude. Projects currently under construction include Golar’s Gimi and ENl’s Coral South.

     

    The importance of maintaining equipment

    The refrigerant compressors hold the key to maximizing production. In most cases, refrigerant compressors are mechanically driven (rotated) by gas turbines. That said, the reliability of the GT becomes equally critical to production.  Aeroderivative GTs are preferred as refrigerant compressor drivers over frame engines because they are smaller and lighter and have components that are quick and easy to interchange, making maintenance easier. They are also designed to offer high reliability, and can be quickly ramped up and down, allowing for any forced interruptions caused by adverse weather conditions to not have a prolonged effect on
    production.

     

    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - view inside high velocity GT filterhouse - Parker Hannifin


    Gas turbine air intake system

    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - typical offshore GT air intake filtration system - Parker HannifinOne key piece of GT equipment is the GT combustion air intake system. GTs take in huge amounts of air as part of their combustion process. Air that is left untreated contains several destructive contaminants, which can cause serious damage, erosion, corrosion, and fouling of the precision engineered GT internals. The harsh weather conditions found in offshore environments are particularly brutal on any piece of equipment, let alone one that needs to run continuously. 

     

     

    Gas turbine filtration requirements

    Issues relating to the ingestion of ambient air particulate, salts and hydrocarbons account
    for 60 - 80% of overall gas turbine losses. Controlling these contaminants with the right air intake filtration is a huge step in assuring reliable plant operations and maximizing LNG output for extended intervals.


    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - inadequate GT Air Intake filtration - Parker Hannifin


    Salt

    Salt is particularly damaging to the GTs on FLNGs because there is such a large quantity of it churned up from the sea. While the filterhouse and internals are typically manufactured from 304 or 316 grade stainless steel, sodium from sea salt (NaCl), if allowed to get downstream of the filters, will combine with sulfur in the fuel to create sodium sulfate (Na2SO4). This chemical reacts with the base metal of the turbine blades in the high temperatures of the hot gas path, causing rapid corrosion and component failures. This is a common effect known as hot corrosion or sulfidation. Chlorine in the salt also acts as a pitting corrosion initiator in colder parts of the turbine, potentially leading to catastrophic damage.

    Because of its hygroscopic nature, salt can be difficult to control. It readily absorbs water and can easily move from solid to liquid form with changes in ambient relative humidity. 

    Filtration recommendations to defend against salt contamination:

    1. Allow for input concentration, aerosol size distribution, and aerosol physical state – whether droplet or particle. 
    2. Consider the impacts of increased pressure drop introduced by adding multiple filtration stages with salt protection.
    3. To prevent salt from traveling downstream to the GT on an FLNG production vessel, using hydrophobic filtration is essential.

     

    Sand and dust

    Sand and dust can cause numerous issues for an installation in terms of both damage to machinery and degradation of turbine performance. Large dust particles greater than 2μm in size can cause erosion and affect turbine efficiency. If the erosion causes parts in the front end of the equipment to fail, contaminants may travel through and cause severe machine damage.

    Finer dust can stick to parts of the machine and change the operating aerodynamics. This, in turn, reduces turbine efficiency, requires online and eventually offline water washing, reduces availability, and increases operational costs. Moisture in the inlet air stream can combine with dust to form mud which can block a filter.

    Filtration best practices for sand and dust:

    • Consider using efficient particulate arrestance (EPA) rated filters as they are designed to stop the very finest of particulate passing downstream to the GT.
    • Filter media selection is a critical for reliable operations. Glass fibre media is the preferred choice for high efficiency hydrophobic filtration. It is thick compared to other technologies, and this greater pore volume makes it naturally less prone to sudden blockages. This means that very high efficiency filtration can be achieved without the risk of alarm/shutdown triggers from sudden pressure spikes, and it provides the capability of much longer and more predictable running between maintenance intervals.

     

    Turbine air inlet filtration system design considerations

    There are several factors that should be considered in the design of an FLNG turbine air inlet system: 

    • Size and weight of the system. 
    • To maximize GT availability and uptime, the system needs to enable online changing of prefilters.
    • The increased air velocity and compact nature of filter systems on FLNGs means the aerodynamics and air turbulence created as the air flows through the filtration and acoustic systems need to be carefully modelled and optimized to create smooth, laminar air flows and to meet the GT air inlet distortion limits as defined by the GT OEM.
    • Operators also need to select a filtration solution that can accommodate multiple filter options without mechanical changes – one that easily adapts to new filtration requirements depending on the location of the vessel and seasonal variations in concentration and size distribution of the airborne challenge.

     

    Conclusion

    To ensure profitability, the reliability of the systems used to liquefy gas onboard an FLNG vessel is critical and, although GT filtration systems may seem like a smaller part of the overall puzzle, they are vital to ensuring ongoing smooth operations. GT air intake systems need to be designed for the real-world environment in which they will be used. 

    They must also be able to effectively and efficiently handle a diverse range of seasonally varying contaminants such as salt, dust, oily hydrocarbons, and moisture. For FLNG vessels, it is essential that these systems are physically compact and flexible enough to allow operators to easily change filter types depending on location. Designing GT air intake solutions for the offshore environment requires a thorough understanding of the very specific challenges such systems will face, but when undertaken correctly offers operators a rapid return on investment.

     

    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - download the white paper - Parker HannifinFor more information on filtration requirements for FLNG gas turbine air intake systems, read the white paper “Fine-Tuning Filtration for FLNG”.


     

    Gas Turbine Air Intake Filtration Solutions for Floating LNG Production - Peter McGuigan - Parker HannifinThis post was contributed by Pete McGuigan, global LNG market manager, Parker Gas Turbine Filtration Division, Parker Hannifin Ltd, UK.

     

     

     

     

     

     

     

    Related, helpful content for you

    Leading with Purpose

    altair® solutions for the oil and gas industry

    The Importance of Using the Right Filtration in LNG Production

    How to Avoid Gas Turbine Shutdowns in LNG Processing Facilities

     


    Follow Parker Filtration on LinkedIn - Parker HannifinFor the latest trends, best practices and practical engineering advice, follow Parker’s Filtration Technology page.

    • 27 Aug 2021
    Gas Turbine Air Intake Filtration Solutions for Floating LNG
    Floating liquefied natural gas (FLNG) vessels are processing facilities that float above offshore gas fields. They treat...
  • Nine FAQs About Watermaker Installation and Maintenance - Viking Yacht - Parker HannifinPleasure craft owners and commercial ship staff rely on watermakers for their supply of purified water for drinking and process applications. Watermakers remove salt and contaminants from sea and brackish water. They offer a continuous supply and a cost-effective alternative to other sources of water.

    Are you thinking about purchasing a Parker watermaker or do you have questions about how they are installed and maintained? To help, we've compiled a list of our most frequently asked questions. 

     

    Nine FAQs About Watermaker Installation and Maintenance - Watermaker FAQ Sheet - Parker Hannifin

     

    To read all 39 frequently asked questions, download the complete FAQ sheet.

     

     

     

    Installation
      What are the installation requirements? 
    • Dedicated thru-hull Inlet fitting and sea *** valve. 
    • Overboard thru-hull discharge fitting. 
    • Product water tank fill line connection. 
    • Electrical circuit breaker and electrical wiring. 

    Where on the boat can the watermaker be installed? 
    • Anywhere. The typical choice is the engine room, but lazarettes, closets, under settees or any other available space is acceptable. 

    What size thru-hull is required? 
    • From ½" to 1", depending on the system. 

    Is above water line installation possible?
    • Yes, the system may be above water level, however, the booster pump (supplied with the system) should be below the water line.


    Maintenance
      What are the pre- or post-treatment chemicals and options? 
    • Pre or post-treatment chemicals are NOT required for the Sea Water Marine Systems. 
    • Pre and post-filtration options are available such as oil water separators, and ultraviolet sterilizers for use in dirty harbors. 

    What is the maintenance or service requirement? 
    • Easy and inexpensive pre-filter cleaning or changing, 500-hour oil changes and 2,000-hour seal maintenance. 
    • Step-by-step maintenance and service are explained in the owner’s manual. 

    What are the typical maintenance costs? 
    • When regularly used, this averages less than ½ penny per gallon of water produced and can vary depending on the condition of the feed water. 

    What is the filter changing and cleaning requirement? 
    • Pre-filter cleaning or changing frequency depends on the clarity of the feed water and is required when the system automatically shuts off at 6 psi inlet pressure. 

    Is there a changing and cleaning requirement for the reverse osmosis (R.O.) membrane element?
    • Nine FAQs About Watermaker Installation and Maintenance - Reverse osmosis membranes - Parker HannifinReverse osmosis membrane cleaning is as needed and is typically on the average once every 2 years. R.O. membranes last an average of 5 years and can last up to 10 years with proper maintenance and care. 
    • The FWF extends pre-filter and R.O. membrane life.


    Conclusion

    Parker watermakers reduce the time, physical effort and concern related to assuring a continuous supply of fresh water on your vessel. Installation and maintenance are easy and require little time, leaving users more time for other activities while aboard. Parker products are backed by a dedicated, highly trained support team and over 350 sales and service dealers worldwide.


    Nine FAQs About Watermaker Installation and Maintenance - Download the Watermaker FAQ sheet - Parker HannifinTo read all 39 watermaker FAQs, download the complete FAQ sheet.

     

     

    Nine FAQs About Watermaker Installation and Maintenance - Paul Kamel, product manager - Parker HannifinThis article was contributed by Paul Kamel, product manager II, Parker Bioscience and Water Filtration.

     

     

     

     

    Helpful, related articles

    Leading with Purpose

    17 Frequently Asked Questions About Watermakers

    Compact Watermakers Are Highly Efficient and Virtually Noiseless

    What You Need to Know About Choosing a Watermaker for your Vessel

    Watermaker Solves Water Challenge on Remote Island

    Enjoy the Benefits of a Watermaker On-Board

    Improving Efficiency of Marine Desalination Systems

    From Saltwater to Safe Water - Disaster Recovery Efforts

     

    Nine FAQs About Watermaker Installation and Maintenance - Follow Us on LinkedIn - Parker HannifinFor the latest trends, best practices and practical engineering advice, follow Parker’s Filtration Technology page.
     

    • 19 Aug 2021
    Nine FAQs About Watermaker Installation and Maintenance
    Pleasure craft owners and commercial ship staff rely on watermakers for their supply of purified water for drinking and...
  • Supply Chain Disruption Impacts Water Purity for Semiconductor Industry -Supply Chain Disruption Impacts Water Purity for Semiconductor Industry + gloved hand holding semiconductor chip + Electronics and Semiconductor/Semiconductor. - Parker HannifinIf semiconductor manufacturers had any question about the complexity of their industry ecosystem, COVID-19 eliminated that doubt.

    Riding a wave of growing demand for semiconductors, buoyed in part by a 5.4% increase in 2020 sales attributed to stay-in-place home electronics orders and surprised by a boom in early 2021 automotive sales, the semiconductor industry found itself in the midst of production shortage. 

    While chipmaking capacity has kept pace with sales for the most part, consolidation of advanced manufacturing players has created scarcity in the market. The scarcity was enough for automotive manufacturers to halt production. 

    Things only worsened when the industry discovered a growing shortage of raw materials essential to component manufacturing. That shortage has spread to multiple sectors, leaving original equipment manufacturers to deal with pricing volatility, extended lead times and stock-outs in the near future.

     

    Supply Chain Disruption Impacts Water Purity for Semiconductor Industry - semiconductor manufacturing close up - Parker HannifinLearn more in our white paper - Trends in Semiconductors: A  Robust Industry Growth, by downloading here. 

     

     

     

     

     

     

    The semiconductor industry is not alone

    Many semiconductor and semiconductor tool companies lessen supply chain disruption with a dual-sourcing plan, a strategy that paid off during the pandemic.
     
    But the semiconductor industry is hardly the only industry to deal with disruption. Nearly 94% of Fortune 1000 companies are dealing with supply chain disruptions due to the pandemic, according to a recent Accenture research study

    Supply chain disruption can extend delivery times and build product backlogs that can turn into customer concerns. Demand, disruption and innovation trickles down, as well. And nowhere is that clearer than in the ultrapure water industry. 

      Demand for ultrapure water is growing

    Ultrapure water consumption in the semiconductor industry is higher than any other industry, and technological advances in clean room and wafer manufacturing have created the need for even higher-grade ultrapure water.

    While this is a boon for the ultrapure water industry – projections call for an $11 billion overall industry appraisal by 2026 – it is a bit of conundrum for manufacturers. 

    First, ultrapure water has become more expensive. Some estimates suggest that for every dollar’s worth of water purchased, it costs $20 to make it ultrapure and another $10 to properly manage wastewater disposal. Increased water usage can impact local communities and farms, and when water levels dip too low, there’s an environmental cost to wildlife habitats, as well.

    There are other environmental concerns, as well. Most notably, the impact global fabs have on local watersheds and consumption. For example, the work of one Stanford University student shows that industry fab feedwater use was comparable to overall regional water use in China. That, along with long-term arid climate forecasts, could prolong – or excerabate – an already growing industry water shortage

    To mitigate both challenges, semiconductor manufacturing plants are exploring ways to reduce, reuse and recycle the ultrapure water they use during the high technology manufacturing process. But those efforts are just as challenging.

     

    Water applications in microelectronics and chemical purity for semiconductor manufacturing

    As chip technology advances, it becomes critical that the silicon wafer surface be as clean and clear of debris as possible to prevent damage and maximize yield. 

    This gets tricky on the nanometer level since there are more and more chances for contaminants to strike the wafer surface. Semiconductor innovation relies heavily on advanced materials research now to maintain the trend of achieving more computing power in smaller footprints. With an increase in chip yield per wafer, any defect could create a level of chip scrapping larger than years past, when fewer chips were housed on smaller wafers. 

    To eliminate the possibility, manufacturers must further reduce the level of contaminants in the water to avoid defects as small as 2 nm. In some instances, eliminating contamination associated with liquids has become more important than that from gases and cleanroom air.

     

    Tackling the challenges of ultrapure water reclamation

    A big challenge for semiconductor manufacturers is what to do with spent ultrapure water. Contaminated rinse water usually winds up in a manufacturer’s industrial waste treatment system and cannot be reused because of added contamination. 

    Overall, reclaiming spent ultrapure water for semiconductor fabrication is almost unheard of, though some methods to reclaim and deionize contaminated ultrapure water for semiconductor use are being tested. That hasn’t stopped some industries from recycling water for other purposes, including chemical aspirators, cooling towers and point-of-use abatement systems.

    But the cost of acquiring ultrapure water combined with wastewater systems management is becoming a financial burden for many manufacturers and may encourage further study into effective reclamation and recycling technology.

    In the meantime, an effective water management solution that handles the quality and quantity of supply water, treats wastewater discharge properly and secures industrial water for effective recycling is paramount for semiconductor companies, according to SK hynix.

     

    Mitigating supply shortages 

    Supply chain disruptions also are impacting the rather straightforward creation of ultrapure water. How so?

    During the purification process, or pretreatment, water is carried through a water filter, clearing it of most contaminants, and then deionized through either ion exchange or electrodeionization. 

    But polymer raw material shortages – especially polyethylene (PE), polypropylene (PP), and monoethylene (MEG) – are causing factory shutdowns, price increases and production delays across multiple industries, according to Harvard Business Review.  Almost universally, the filters critical to the purification of ultrapure water are built with these polymers, which means extended lead times both in component and semiconductor manufacturing.

    This is where a dual-sourcing strategy like the one employed by Parker can pay dividends. Dual-sourcing, or multi-sourcing, is a risk-management strategy in which an organization uses two or more suppliers to acquire certain components, raw material, products and services.

    For example, when a major diversified chip manufacturer’s original filter supplier unexpectedly extended lead times and couldn’t deliver those critical components within the promised time frame, Parker was able to supply those filters in less than half the lead time.

      Investigating fluid impurities

    Semiconductor manufacturers also are combating wafer defects caused by process and fluid impurities. Often, filter leaching is the culprit – or what the defects are attributed to. The right vendor can help deduce the issue through expert technical assistance.

    That was the case when one major chip manufacturer discovered a correlation between its wafer yield and the improved resolution of metals extractables measurement in their process water. The fluid transfer components, including Parker’s Clariflow filter line, could also be a source of added contamination that was not previously detected. To identify root cause, the manufacturer reached out to Parker, who then recommended a technical team further investigate to ensure the problem had been properly identified. Parker’s Technical Counsel provides field and lab service for customer application troubleshooting. They conduct fluid and filter analysis into the parts per trillion range.

    After a thorough investigation, including a best-practices review with some of the customer’s peer manufacturers, the Parker team concluded the very nature of the filter’s construction materials, polypropylene and polyethersulfone membrane, tend to leach trace metals over time regardless of how the final filter product is manufactured or flushed.

    Recognizing the material, rather than the construction, was the root cause, Parker encouraged the customer to consider its all-fluoropolymer filter product, Fluoroflow. Testing confirmed improved fluid purity and extended on-stream life. This, in turn, increased wafer yield through decreased defects, reduced equipment downtime, and more than $100,000 in annual filter spend. 

     

    Parker solutions for the semiconductor industry

    Regardless of supply chain disruption and wastewater reclaimation efforts, the demand for ultrapure water in the semiconductor fabrication process will only grow. Through strategic dual-sourcing and unparalled industry expertise, Parker helps manufacturers meet demand with high-purity filtration solutions that enhance processes and meet ultrapure water needs. 


    Polypropylene filters, like the Parker Clariflow and Polyflow, are designed for general-purpose use in the filtration of high-purity liquids and aqueous chemicals. Our fluoropolymer product, Flouroflow, is designed for general-purpose use in the filtration of high-purity liquids and aqueous chemicals.

     

    Supply Chain Disruption Impacts Water Purity for Semiconductor Industry - download white paper button - Parker Hannifin To learn more, download our white paper on semiconductor trends.
     

     

    Article contributed by the Parker Filtration Team with our Bioscience Filtration Division. 

     

     

    Follow Parker Filtration Technology on LinkedInFor the latest trends, best practices and practical engineering advice, follow our Filtration Technology page.

     

     

    Related and helpful content:

    Leading with Purpose

    Explore Parker solutions for the Electronics and Semiconductor Industry

    Read more articles on applications in Electronics and Semiconductor

    Semiconductor Fabs Lower Cost of Ownership with HiFluor Materials

    Practical Applications for Precision Electromechanics in Photonics

    Why Double the Seals Has Double the Impact in Semiconductor Applications?

    • 18 Aug 2021
    Supply Chain Disruption Impacts Water Purity for Semiconductor Industry
    If semiconductor manufacturers had any question about the complexity of their industry ecosystem, COVID-19 eliminated that...
  • Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Water Bowl - Parker HannifinA lot has changed in the transportation industry since the introduction of fuel and its use in internal combustion engines in the late 19th century. As environmental concerns have driven more stringent emissions regulations over the years, today’s diesel fuel needs to be cleaner than ever to protect critical engine components. This has led to the wide use of water-fuel separation filtration technologies in engine designs. Fuel filter water separators are typically used to remove contaminants in the form of water droplets and solid particles from the fuel before it enters the engine.

    In a fuel-water separator, the separated water falls to the lower bowl of the filter assembly — the water bowl — and is drained at regular intervals. If the water isn’t drained effectively, it can be re-entrained with the fuel causing significant damage to the engine and its performance.

    In this blog, we outline a case study of simulation models used to construct design tools that contribute to creating a good first prototype design for water bowls and drainage in water-fuel filters for combustion engines.

     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Download the white paper- Using Numerical Simulations To Build Design Guidelines for Water Bowls - Parker HannifinThis blog was adapted from a white paper, “Using Numerical Simulations to Build Design Guidelines for Water Bowls”. Download your copy today.

     


     

     

     

    A fine line between simple and complex

    While this drainage mechanism in a fuel-water separator seems simple, the design is quite complex primarily due to three factors:

    • Geometry 
    • Fuel properties
    • Material properties


    To best and most efficiently understand these factors, high-fidelity numerical simulations can be used. These simulations will lower the reliance on and requirement for experimental testing. They can be used to understand the physics of water drainage from inside a filter’s water bowl. Further, an analytical solution can be formulated to provide a design engineer with a very good first approximation of the most effective physical attributes that will assure proper water collection and drainage.

     

    How it works

    When water droplets are separated from fuel by a fuel-water separator, they coalesce and grow larger and heavier. Gravity causes the water droplets to settle and collect down as clean fuel is pulled in the opposite direction. The example shown below is our Fuel Filter / Water Separator – Racor GreenMAX™ Series.

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Drain mechanism on fuel filter water separator - Parker Hannifin
     
    The collected water is drained regularly to assure that it does not re-contaminate the cleaned fuel. If the water collected in the water bowl does not drain due to clogging or other malfunction, the separated water will re-contaminate the cleaned fuel and the performance of the fuel-water separator will dramatically diminish. 

    An increase in water content in the fuel supplied to the engine can:

    • Prevent fuel combustion from occurring if a large quantity of water is present. 
    • Cause abrasion to engine components and cylinder walls.
    • Displace fuel’s lubricative coating on injector components causing erosion and surface pitting. 

     

    An analytical solution – case study

    Parker Hannifin specializes in fuel-water separator solutions for a variety of applications from marine to gasoline engines. Parker’s engineers found that given the varied geometries and materials used in their solutions, a simplistic physics-based tool to understand critical design features that prevent effective drainage of water from the water bowl is beneficial. The purpose of a study using this tool will provide initial design guidelines to a design- engineer even before a prototype is made for testing. 

     

    Computational fluid dynamic model (CFD)

    From the base geometry of the water bowl, the internal fluid volume was extracted. Key geometric variables were refined, and the internal volume extraction was automated so that several different geometric variations could be simulated in the design space. The extracted internal volume was discretized for computational fluid dynamics (CFD) using unstructured polyhedral elements with finer resolutions where water curvature is of significance (for example, when geometry gaps are small). The cell aspect ratios and skewness factors were the key quality factors monitored to estimate meshing quality. Multiple levels of refinement were considered, and results were monitored. 

    The workflow used for the analysis is shown below. 
     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Computational Fluid Dynamic Model Work Flow - Parker Hannifin

     
    A 3D transient, multiphase (volume-of-fluid) method was used to model the two-phase flow. To introduce water drops in the fuel domain, periodically, drops of specified volume were introduced into the water bowl. The estimate of water sizes came from experimental observations. The contact angle for water-fuel-surface interface was also specified from experimental measurements for all the different surfaces with which the water comes in contact. 

    In this application, the interface curvature was very critical, therefore a continuum surface stress (CSS) model was chosen to model the surface tension force.

    The local pressure drop at key geometry points was monitored to indicate the event of water clogging the water bowl. The simulation was run for a pre-set time and the pressure and movement of water drops were observed to see if the clogging event was registered. 

     

    Results

    From the CFD analysis, key geometric features that result in clogging were identified. Analysis of these results paved the way to develop physics-based analytical expressions to predict obstruction of water in a water bowl design. Using the guideline of the analytical expression, experimental testing was performed on some known water bowl designs. The comparison between the analytical expression, CFD results and the experimental observation is shown below. The plot shows that the CFD observations of water buildup with respect to critical geometric gap as well as the experimental observations are within ± 5% of the analytical expression derived. This validates our physical understanding derived from the CFD analysis as well as the analytical expression simplified for this problem. 
     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - CFD experimental results - Parker Hannifin


    A simple design guide

    Equipped with this knowledge, Parker engineers created a simplistic design guide. This is highly valuable to a design engineer as it avoids time consuming CFD and/or experimental prototype analysis and provides a direct pathway to constructing a good first prototype. A sample design guide shown below provides a visual of the simplicity of use. The design engineer would input design parameters and the design guide would provide inputs on issues with geometric parameters. 

     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Visual Design Guide - Parker Hannifin

    Conclusion

    Engine manufacturers rely heavily on creating prototypes and testing concepts to find appropriate design solutions. Engineers can use high-fidelity numerical simulations to provide quick guidelines and resolutions to water clogging issues they might face in their testing. Apart from that, since this tool provides design guidelines as well, the first prototype built with it is often more accurate than without it. This lowers testing requirements and prototype iterations by a significant number thus helping the engineer get to the final design faster and more effectively. 

     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Download the white paper - Parker HannifinTo read the complete procedure and results, download a copy of the white paper “Using Numerical Simulations to Build Design Guidelines for Water Bowls”.


     

    Using Simulation Models To Build Design Guides for Water Fuel Filter Bowls - Sucharitha Rajendran, advanced system design and modeling engineer - Parker HannifinThis post was contributed by Sucharitha Rajendran, advanced system design and modeling engineer, Parker Filtration Innovation Center.

     


     

     

     

    Related, helpful content for you:

    Defining Our Unique Contribution to the World
    Learn About the Filtration Innovation Center
    How Manufacturers are Leveraging Virtual Reality for Product Development
    Read Our Filtration Blogs


    Follow Parker Filtration Technology on LinkedInFor the latest trends, best practices and practical engineering advice, follow our Filtration Technology page.

    • 17 Aug 2021
    Fuel Filter Water Separators - Building Water Bowl Design Guides
    A lot has changed in the transportation industry since the introduction of fuel and its use in internal combustion engines...
  • The MERV 13 Boom -- Choosing the Right Filter for Your HVAC System - Indoor Air Quality - HVAC Parker Hannifin The COVID pandemic impacted the way many industries do business, and the HVAC industry is no exception. Ongoing concerns regarding infection risk and indoor air quality have prompted an unprecedented demand for filters with a Minimum Efficiency Reporting Value (MERV) value of 13, commonly known as MERV 13 filters, as well as those with even higher MERV ratings. As part of its COVID response, ASHRAE recommends increasing outside air within buildings as much as possible, as well as upgrading air filters to a minimum MERV 13 efficiency rating.

    The rush to upgrade to high MERV filters, however, opens the door to a practical discussion about whether that is the best action in all cases. The reality is that using the wrong filter for the wrong application in the wrong place can substantially limit HVAC systems’ efficiency. The result is that air quality will suffer, and the system will consume more power than it should to function.

     

    Is MERV 13 really the best choice for your HVAC system?

    A MERV rating is determined by the filter’s particle-size removal efficiency. The higher the number, the higher the filter efficiency. Before considering ratings, however, it’s important to determine the purpose of the filter.

    If the primary purpose is to keep heating and air conditioning systems clean and block contaminants from interfering with the operation of key components, you likely don’t need as high a MERV rating. If the primary objective is to protect breathing air quality, then a higher MERV rating might make sense.

    An option worth considering in some applications is the use of a multi-filter system that includes final filters and pre-filters. A less expensive, lower MERV-rated filter, functioning as a pre-filter, can trap dirt and large particles before the air reaches the final filters downstream which then remove the small particles. Multi-filter systems can extend the life of the more expensive final filters, creating overall cost savings.

    When choosing a filter, it’s also important to consider the conditioned space’s activities and the types and sizes of particles those activities generate. Contaminants of greatest concern need to be evaluated to determine the level of filtration efficiency required for that contaminant’s size (measured in micrometers/microns). Once a full list of contaminants of concern has been identified, you can use the ANSI/ASHRAE Standard 52.2-2017 to select the proper filter with the appropriate MERV.

     

    Additional considerations when choosing a filter

    Of course, particle-capture efficiency matters. But there are also other filter characteristics that should be considered when determining the best filter for a specific application. Cost is always a consideration and should include the purchase price, as well as service life and maintenance requirements. The filter’s resistance to airflow also is a key consideration, as it is proportional to the energy consumed by the filter. Energy expenditures can account for about 81% of an air filtration system’s annual operating costs, while its purchase price and maintenance can account for about 18.5%.

    Other considerations include the design and materials used in filters. Some designs are easier to install, seal better, and don’t absorb moisture or shed. Pleated filters, which are commonly made with a blend of cotton and polyester or synthetic media, provide a larger filter-surface area than panel filters. Most pleated filters are MERV 6 to 13. Depending on the filter, capture efficiencies for particles in the 3 to 10-micron range can be 35% to 90%.

    There are also extended-surface filters that are made with synthetic, fiberglass or cellulose/glass-fiber media. These include bag or pocket, rigid-cell, aluminum-separator and V-bank filters. Pocket filters provide an even greater filter surface area than pleated filters to provide maximum efficiency with the lowest pressure drop and longest life. They typically have MERV ratings of 11 to 15.

     

    Other factors that can affect efficiency          

    Even a filter with the highest MERV rating can’t achieve high-quality air if some of the air is not going through the filter. Gaps around high-efficiency filters or filter housings can decrease filter performance. They occur when filter media are not sealed properly in the filter frame, when filters are not gasketed properly in filter racks, or when air-handler doors and duct systems are not sealed properly.

    For a 1-mm gap, bypass flows can increase to 25% to 35% of the total airflow. The percentage increases based on the filter’s efficiency because air naturally flows through areas with the least resistance. Since higher efficiency filters have a greater resistance to airflow, bypass air has a larger effect. This, in turn, reduces the efficiency rating. For a 1-mm gap, for instance, a MERV 15 filter will perform only as well as a MERV 14 filter. A 10-mm gap, in contrast, causes a MERV 15 filter to perform as a MERV 8 filter. That’s why building operators and maintenance personnel should perform regular field inspections to ensure filter seals and gaskets are installed properly.

    To combat gap problems, Parker created its QuadSEAL® HVAC filters with proprietary E-Pleat® media technology. The molded polyurethane frame incorporates a QuadSEAL integrated gasket on all four sides and can flex without damage. Since the media pack is 100% bonded into the foamed frame, bypass is eliminated as is the need for additional sealants or adhesives.

     

    Challenges with MERV 13 filters (and what can be done)

    If it were just a matter of choosing the filter that produced the best air quality, the decision would be simple. Everyone would install filters with the highest MERV ratings they could find. Unfortunately, it’s not quite so simple. The challenge facing engineers, building owners and maintenance personnel tasked with specifying and installing filters is that more efficient filters cause higher pressure drops because the smaller pores create more resistance to air flow.

    Not only are higher efficiency filters less energy efficient (causing increased energy consumption by the fan), but your air handling unit simply may not have enough capacity to function with a high-efficiency filter. The reality is that most commercial HVAC systems today can only handle MERV 8 filter or MERV 9 filter types.

    So, what are your options?

    • Upgrade to the most efficient filter you can without exceeding the operating capacity of your ventilation system (including investigation of newer filter designs that may have higher ratings and less pressure drop)
    • Upgrade your system so that it can overcome the additional pressure drop and handle a higher-efficiency filter. This often requires, at minimum, upgrading fans.
    • Use portable air cleaners with high-efficiency filters to complement your current HVAC system.

    MERV 13 vs HEPA -- Limited applications for highest efficiency ratings

    When COVID hit, suddenly industries that, for years, had functioned well with filters with MERV ratings of 8, 10 or 11, were scrambling for MERV 13, 14 and 16 filters. The reality, though, is that there are filter options even more efficient than MERV 16 filters.

    High Efficiency Particulate Air (HEPA) and Ultra-Low Particulate Air (ULPA) filters are designed to trap the smallest airborne particles and contaminants. HEPA filters have a minimum efficiency of 99.97% at 0.3 microns, whereas ULPA filters have an efficiency rating of 99.999% at 0.12 microns or higher. This does not mean that ULPA filters are better than HEPA filters when taking air flow and other variables into account. In fact, HEPA filters cost less, have a lower resistance to air flow and offer a longer service life than ULPA filters.

    Parker offers a complete line of HEPA and ULPA standalone and pre-filters for removing particles and contaminants with efficiencies up to 99.9995%. They also are designed to reduce energy consumption and operating costs.

    So why doesn’t everyone simply switch to a HEPA or ULPA filter since they represent the gold standard in air quality? Because most commercial and industrial HVAC systems on the market today simply aren’t compatible with them. Since they are so efficient, HEPA and ULPA filters cause a higher pressure drop than filters with lower MERV ratings.

    The best option today for using HEPA and ULPA filters is as part of stand-alone systems. Many school districts are looking at options for installing portable air filtration systems with HEPA filters in each classroom to augment their central air filtration systems. HEPA and ULPA filters are also frequently found in critical medical applications and cleanrooms.

      Newer innovations offer superior efficiency while overcoming problems with air flow

    Parker’s approach to balancing the need for efficiency with minimum pressure drops has been the development of its LoadTECH® filter that utilize Parker’s proprietary E-pleat® technology. This patented design molds filtration media into a series of pre-formed channels that direct the air smoothly through the filter, allowing for even loading, minimum resistance and complete media utilization. The previously mentioned QuadSEAL® filters offer a similar benefit of improving efficiency without restricting air flow. The advanced media used in these filters also resists tearing, damage, moisture and microbial growth, leading to a long filter life and the need for fewer filter changeouts.

    The decision to use a filter with a MERV 13 rating (or higher), in accordance with the latest guidance from the Centers for Disease Control (CDC) and ASHRAE, is complicated by the fact that most commercial HVAC systems cannot handle the highest efficiency-rated filters. While there are options for upgrades, redesigns that include a multi-filter system, and new technologies that balance efficiency and air flow, specifiers need to be careful that they choose the right filter after considering all the variables, including cost, maintenance requirements, operating efficiency and, of course, air quality.

     

    This article was contributed by the Parker HVAC Filtration Division.

     

    Related content:

    Reliable Solutions for HVAC and Refrigeration

    Defining Our Unique Contribution to the World

    Related content on HVACR industry

    Avoiding Filter Failures in Air Handling Systems

    How to Improve Indoor Air Quality and Protect Your HVAC System

    Safety Precautions to Take When Changing HVAC Filters for Reducing Airborne Transmission

    Reducing Airborne Transmission with HVAC Air Filters

    Frequently Asked Questions About HVAC Filtration and COVID-19

     

     

     

    • 24 Jun 2021
    The MERV 13 Boom -- Choosing the Right Filter for Your HVAC System
    The COVID pandemic impacted the way many industries do business, and the HVAC industry is no exception. Ongoing concerns...
  • How to protect Aviation Fuels for Safer Aircraft - image for webinar - Parker HannifinSince the introduction of aviation fuel monitor cartridges in aviation fueling, super absorbent polymers (SAP) have been the essential materials used in the final stage of airport ground fueling systems for the protection of on-board systems from water contamination. The material’s ability to absorb and chemically lock in water have its challenges―potential media migration downstream. In 2017, the aviation industry through the International Air Transport Association (IATA), Air Transport Association (ATA) and Joint Inspection Group (JIG) introduced interim procedures while SAP-free filtration was developed. Parker has introduced Water Barrier Filtration technology for interplane fuel filtration solutions. 

     

    Runway for change is fast approaching with the Phaseout of EI 1583 SAP filter monitors

    The EI specification for filter monitors has been retracted and is no longer available or applicable to the industry, as of December 31st, 2020. Phaseout of the 1583 SAP monitor has been mandated by the industry regulators.

    Parker's new drop-in solution for new and existing monitor vessels, the CDFX Water Barrier Filter, guarantees removal of water and dirt from fuel without requiring any additional sensing equipment, removing the water rather than simply detecting it. You can ensure that the clean dry fuel is delivered every time, avoiding costly downtime, potential flight delays, and/or removal of contaminated fuel from your aircraft.

    All of Parker's products are fully certified, making switching easy and cost-effective.

     

    HOw to protect aviation fuels for safer aircraft - download info - Parker Hannifin Learn more about the new Parker Velcon revolutionary technology. 

      Considerations and questions for SAP Phaseout options

    There are several things to consider when deciding on various options available for SAP phaseout solutions. 

    What are your choices?

    • Filter water separators
    • Dirt defense and electronic sensors
    • Water barrier filters

    Questions to ask and factors to consider:

    • What is the tolerance to risks?  Is water removal important at the wing of the aircraft?
    • The competitor's dirt defense filters do not remove water.
    • The sensors alarm and then you must decide what to do when it does alarm. Procedure? Who makes the "all good" call after an alarm.
    • What is the expense of a fueling shutdown? Does it matter if it's a truck, hydrant servicer or a hydrant system?
    • How robust is the sensor under adverse conditions? Can it fail prior to annual certification?
    • Who does the managing of sensor calibrations? Who manages the spare certified sensors? What is your sensor life expectancy in operation or on the shelf? 
    • Filter water separators can be disarmed, do not protect against water slug and are not a drop-in solution. And often these filter water separators are larger, heavier, and expensive to change out requiring considerable labor.

     

    This means costly equipment design, installation, vehicle design limitations, meter capability, electronics, etc., resulting in expensive downtime

    The Parker Velcon water barrier technology is approved to the EI 1588 test specifications. There are 22 tests that were similar to the 1583 specifications. However, we removed the tests associated with SAP testing. The rest of the 1588 requirements are part of the specifications:

    • Water slug testing
    • Emulsified water testing
    • Solids testing
    • Compatibility testing
    • Structural testing

     Performance requirements for 1588 are as stringent as 1583, however, without the SAP media.

      Phase 1 testing

    At Parker Velcon safety is our priority.  In April of 2019, Parker Velcon successfully qualified the CDFX Water Barrier filter to the EI 1588 specification. Members of the Energy Institute witnesses were present at our Colorado facility.

    Once qualified, we entered the EI robustness Phase One testing. This consisted of:

    • 400 stops and starts
    • Adding additional additives to the fuel
    • Doing pull tests
    • Running at 125% of rate of flow
    • Swapping the vessel for 12 hours with water

     

    How to Protect Aviation Fuels for Safer Aircraft - Test graph - Parker Hannifin Water Barrier Filter

    Test data shows that all 20 tests passed Phase One testing with no failures, achieving maximum effluent water of fewer than one parts per million. All the tests met the minimum pull force specification above 500 Newtons.

                  Phase Two testing for field trials


    How to Protect Aviation Fuels for Safer Aircraft Phase 2 robustness test data - Parker Hannifin Two locations were selected and testing was done at these airport tank farms. These tests were accelerated with more than 10 times the typical daily throughput. Upon completion, filters were sent back to our Velcon lab and a witness was present, through EI, to verify the water removal capabilities. Test runs from the two trial locations show vessel throughputs of over 3 million and 5 million gallons per vessel.

    When breaking that down to throughput per element, it is approximately 180,000 or 310,000 gallons respectively. During the field trials, elements were returned to our Velcon lab for testing with an EI witness present. These tests included the 50 parts per million slug test and pull tests. Results were consistent with the EI qualification.

    Filtration performance and filter integrity have exceeded expectations with no signs of degradation, disarming or reported issues with additives in the fuel.

     

    Water Barrier filtration technology timeline

    To summarize the developments of the CDFX Water Barrier filter technology, we review the timeline:  

    • The EI 1588 development and specification published.
    • We successfully qualified the water barrier filter with Witnessed EI 1588. 
    • Electrostatic charge generation test completed.
    • We completed the phase one and phase two robustness testing and are currently in field trials with nine months into the trials.
    • Once field trials are complete, we expect acceptance into the industry operating standard.
      How does the water barrier filter work?

    Here's a short video of the water barrier filter and operation. As you can clearly see, water in the fuel is repelled by the water barrier filter and droplets fall to the bottom of the vessel where eventually they must be removed at the low drain points.

     

      Differences in technology application

    Some product application differences with the water barrier filter include daily sumping that will be required and some education on the differential pressure effects.

    Any water collected will need to be drained from the vessel drain point.

    Parker CDFX elements are designed to replace SAP monitor elements and operation will be essentially the same. Since they do not absorb water, there are a few things to note:

    • The low point in the vessel should be sumped daily.
    • The differential pressure should be closely monitored.
    • If differential pressure does increase, it's most likely from either solid contaminants, slow buildup of entrained water or water slug.
    • If it is a water slug differential pressure rises quickly and shut down the flow.

    Even if the entire vessel is filled with water, no water will pass through the filter. In any case, what is important to note is the differential pressures should not fall below the initial starting differential pressure when operating at rated flow.


     The Parker Velcon solution

    How to Protect Aviation Fuels for Safer Aircraft - CDFX Group Filters - Parker Hannifin There are three available technologies:

    • EI 1588 water barrier filter  
    • EI 1581 filter water separators
    • EI 1599 dirt defense filters in conjunction with the EI 1598 water sensor

    As you can see, only the 1588 water barrier technology offers removal for all three capabilities.

    The CDFX Water Barrier filter is a true drop-in replacement, innovative at removing water and dirt while not allowing anything to pass through. It offers only clean dry fuel without the use of SAP media. Cost and resource-efficient, it fits deployed vessels in service, but without the needed cost of retrofitting or adding electronic sensors. All materials are compatible with fuels in the industry and simple product procedure changes are in place. Same diameter, same lengths, same flow rates all as with the two-inch monitor elements.

     

    Ease of replacement

    This is a short video demonstrating the ease of converting from the SAP monitor to the Parker Velcon water barrier filter.

     

     

    General aviation fueling

    How to Protect Aviation Fuels for Safer Aircraft - General Aviation Fueling - Parker Hannifin Our water barrier filter technology was further developed for general aviation fueling applications.

    The ACOX family of Water Barrier filters are ideal for slow throughput. From an operations perspective, there are minimal changes to your current operating procedures, no modifications to the filter vessel and filter change at a maximum of 22 PSID or three years of service life.

     

    How to Protect Aviation Fuels for Safer Aircraft - General Aviation Fuel Filter - ACOx Parker Hannifin

     

     

    Drop-in solutions for existing houses will not require any retrofitting or additional electronic sensors. Again, no SAP material is used in the fabrication of the ACO X series of filter elements, and these elements are effective in fuel containing FSII which is anti-icing additive. These elements currently meet the effluent fuel and structural requirements of 1588. However, qualification to the EI-1588 standard is coming shortly for the ACOX family.  
     

     

    Electronic water sensor

    How to Protect Aviation Fuels for Safer Aircraft - Parker WIF Water Sensor- Parker Hannifin Parker Velcon has also developed an electronic water sensor for detecting water and fuel. It meets the 1598 design criteria and it was developed to replace chemical water testing. It detects water from zero to 50 parts per million, utilizes a one-quarter-inch common standard port connection, will be certified to ATEX and IECE X, easily to install without any plumbing or electrical systems. And a control box is also available if desired.

    The sensor works on a principle of light scatter. Laser light reflects off water and is detected by the photo detector. The more water droplets, the more intense the laser glows as shown in the illustration on the right. The design and testing for the sensor are complete. We expect to achieve ATEX IECE X certification shortly and are looking to qualify the sensor to the 1598 certification in midyear of 2021, making it available to the industry by later in the year in 2021.

     

     

     

    Watch the full presentation by Robert Guglielmi, presented at Intrapol Aviation Conference

     

    How to Protect Aviation Fuels for Safer Aircraft - Robert Guglielmi - Parker Aerospace Filtration DivisionArticle contributed by Robert Guglielmi, business development manager, Aerospace Filtration Division, Parker Hannifin

     

     

     

     

     

    Related industry topics: 

    Defining Our Unique Contribution to the World

    Innovation Center Delivers Filtration Engineering Breakthroughs

    Elevating Flight With Decades-Strong Aerial Refueling Solutions

    Reducing Lead Times by Half Earns Praise from Customer GA-ASI

    How Fire Seals Contribute To Overall Aircraft Flight Safety

    eVTOL Aircraft Require Comprehensive System-Level Thermal Management

     

    • 15 Jun 2021
    How to Protect Aviation Fuels for Safer Aircraft
    Since the introduction of aviation fuel monitor cartridges in aviation fueling, super absorbent polymers (SAP) have been...
  • How Do We Keep Advanced Gas Turbines Operating at Peak Efficiency - Getty_ Gas Turbine  Installation - Parker hannifin The performance of gas turbines (GT) for power generation has a fundamental influence on the bottom line. Lack of availability, reduced power output and maintenance overheads all link directly back to profitability. As the efficiency of GTs continues to increase, with models such as the GE H-class now pushing power plants above 60% net efficiencies, the cost for loss of performance gets higher. It doesn’t take a math whizz to see that the more power generated by a GT, the more power is lost if it underperforms or has to be shut down! 

    This new breed of efficient GTs aids the global push in the reduction of CO2 emissions to address climate change. They offer:

    • Fast start-up and ramp rate capabilities.
    • Greater turn down, and more cost-effective spinning reserve.
    • Better fuel efficiency, and lower operating costs, which, in turn, equates to reduced environmental impact. 

     

    How to Keep Advanced Gas Turbines Operating at Peak Efficiency
    To learn more download our White Paper, Driving Gas Turbine Efficiency: Maintaining Greater than 60% Efficiency for Gas Turbine in Power Generation. 

     

     

    Consuming vast quantities of air, however, the quality of this air has a huge impact on GT performance, and the higher the GT efficiency, the greater the potential impact. This means the design of the filtration system has an even more crucial role to play in overall operational efficiency and reliability. 

    But what is so different about these high-efficiency GTs and why do they need different protection to older E-class or F-class models? They face all the same environmental perils as current GT installations – but their finely tuned performance is precision-engineered, packed with technology, latest advanced materials and finishes. This means they require more rigorous protection from the fouling, pitting and corrosion that finer particulates and contaminants in the inlet air flow cause to blades, stators and buckets.  

    You might consider just using finer filter media to catch the contaminants. Along this path, however, lies many troubles. Often the worst thing to do is to employ the finest, high-efficiency media as this easily blocks, can cause quick rises in differential pressure leading to unplanned GT “runback” or even shut down and increased maintenance overheads. On the business side of things, huge dollar losses from drops in power output are even more preeminent with pressure rises when operating these bigger, more efficient machines. 

    HOw to Keep Advanced Gas Turbines Operating at Peak Efficiency -If you want to find out how you can ASSURE the performance of high efficiency GTs, the answer is multi-faceted. It requires deep understanding of real-world operating conditions and the demands of these impressive machines. And an understanding of what really matters inside the inlet house – and that can only come from experience. 

    The filtration system is only as good as its weakest part. Many different factors about filter design equate to assured performance, including:

    • Construction
    • Sealing
    • Pleat design
    • Choice of media, across multiple filtration stages

     

    At the end of the day, assuring the performance of H-class or equivalent GTs, requires a revolution in filtration design to provide maximum protection and reliable performance in the harshest installation environments. 

     

    Introducing clearcurrent® ASSURE

    How to Keep Advanced Gas Turbines Operating at Peak Efficiency - clearcurrent ASSURE - Parker Hannifinclearcurrent® ASSURE range of filters features an innovative design that helps to boost GT performance, reduce lifecycle costs, improve safety, increase availability and extend GT life. Features and benefits include

    • Hydrophobic and oleophobic properties remove problematic contaminants carried through to the GT in liquid forms.
    • Self-cleaning.
    • Consistent performance through all filtration stages equates to predictable differential pressure.
    • Made to an exact fit in the inlet house to prevent them from being bypassed.
    • Extended service life.
    • Reduced lifetime cost.
    • Robust construction stands up to the harshest environments.

     

     

    How to Keep Advanced Gas Turbines Operating at Peak Efficiency - download the white paper - Parker HannifinDownload our white paper, "Driving Gas Turbine Efficiency: Maintaining Greater than 60% Efficiency for Gas Turbine in Power Generation" to learn more.

     

     

    This article was originally published in the print and digital magazine 2-2021 Issue of Power Engineering International and again in the online version here:  Why compromised filters mean compromised gas turbines.

     


    New Coalescer Technology Improves Gas Turbine Performance - Tim Nicholas - Parker GTFThis post was contributed by Tim Nicholas, market manager, PowerGen,  Parker Gas Turbine Filtration Division.

     

     

     

     

     

     

    Related and helpful content on Gas Turbine Filtration for Power Generation:

    Improving Power Plant Gas Turbine Performance in Harsh Desert Environments

    Challenged by Gas Turbine Inefficiency? Consider Ways to Increase Output

    Eliminate Maintenance Concerns on Gas Turbine Fuel Control Valve

    New Coalescer Technology Improves Performance and Protects Gas Turbines

    Eliminate Maintenance Concerns on Gas Turbine Fuel Control Valve

    • 14 Jun 2021
    How to Keep Advanced Gas Turbines Operating at Peak Efficiency
    The performance of gas turbines (GT) for power generation has a fundamental influence on the bottom line. Lack of availability...
  • How to Scheive Reliable and Accurate Function of Lasers - Laser cutting - Parker HirossToday, lasers are used in a variety of industries including automotive, plastic, packaging, clothing, furniture, toys, label production, musical instruments, and medical. In order to be competitive, meet market expectations, and adhere to strict quality standards, businesses around the world are turning to industrial lasers to support their manufacturing processes.

     

    Effective operation

    The key to the success of implementing a laser system is not just having a laser, but ensuring it functions properly. In order to do this, it's very important that close attention is paid the to temperature of the water running through it. Variations in operating temperature will affect the laser's performance and increase downtime levels, resulting in costly maintenance and lost production.

    These high-powered lasers generate a large amount of heat and must be dissipated to avoid overheating critical components. Regardless of whether it is a Carbon Dioxide (CO2), Neodymium, or Fiber laser, it will require a cooling system to remove excess heat. Water cooling is used for most industrial lasers because of its availability and high thermal capacity. It is necessary to maintain a high level of control over the temperature and cleanliness of the cooling water for three main reasons:

    1. Water temperature affects the precision of the laser wavelength
    2. Thermal management is required for higher output efficiency
    3. Reduction of thermal stress is critical in achieving the desired beam quality

    A reliable supply of cooling water is required to keep the laser functioning properly. If there are variations in operating temperature, the laser machine performance is negatively affected, resulting in costly, time-consuming downtime.

     

    A flexible solution

    How to Achieve Reliable and Accurate Function of Lasers - Hyperchill Plus Chiller - Parker Gas Separation and Filtration DivisionParker Hannifin has been serving the laser industry for years with a specialized range of industrial water chillers for precision cooling. Parker's Gas Separation and Filtration Division has recently expanded the product line and introduced a new chiller solutionthe Hyperchill Plus. The Hyperchill Plus is designed for safe and reliable operation in the most varied working conditions, providing precise and accurate control of the process fluid temperature. The availability of a wide range of accessories and options makes Hyperchill Plus a flexible cooling solution. 

    Features and benefits
    • Cooling capacities from 4,500 btu/hr to 65,000 btu/hr. 
    • A differential pressure switch ensures a system shut down in the case that the circuit runs dry.
    • Non-ferrous hydraulic circuit maintains the quality of the coolant ensuring stable working conditions, improved productivity and decreased maintenance costs.
    • Compact design provides a space saving and easy to install solution.
    • Condenser filters reduce dirt, preventing system downtime.
    • High reliability and low energy consumption even in extreme ambient conditions

     

    A partner you can trust

    We know each application in the industry is different, that is why our dynamic engineering team can design and optimize the chiller for your process, providing you the benefits of reliable laser performance. Trust Parker’s global service network and our years of industry experience for your water cooling needs. 

     

    For more information on the new Hyperchill Plus, view this interactive presentation and download the brochure.

    How to Achieve Reliable and Accurate Function of Lasers - Cover Interactive Guideimage - Parker Hannifin

    This post was contributed by the Gas Generation Technology Team - Parker Industrial Gas Filtration and Generation Division.

     

    Related articles:

    Reduce Laser Cutting Costs with On-site Nitrogen Generation

    Six Good Reasons to Dry Biogas to a Low Dewpoint before Combustion in a CHP Engine

    How to Distinguish a Process Water Cooler from a Chiller

    Best Practices for Your Process Chiller System Installation

     

     

     

     

     

    • 11 Jun 2021
    How to Achieve Reliable and Accurate Function of Lasers
    Today, lasers are used in a variety of industries including automotive, plastic, packaging, clothing, furniture, toys, label...
  • 3 Reasons Why Nitrogen is the Inert Gas of Choice for Winemakers - Parker HannifinThe global wine market has never been more competitive, and customer expectations have never been higher. Facing a world of choice, buyers in the wine industry are increasingly turning to familiar brands for the reassurance of consistent quality, taste and affordability. The challenge for producers is to supply consumers’ favorite wines at the volume and cost required while ensuring that taste, character and enjoyment remain undiluted.

    From fermentation to bottling, nitrogen has an important role to play in modern winemaking. Nitrogen is used for purging or blanketing tanks, racking barrels, flushing bottles, and at any point where the wine comes in contact with air.

    Benefits of using nitrogen in wine production and processing include:

    1. Nitrogen can be generated on-site from your air compressor.
    2. Nitrogen is the most abundant gas in the earth's atmosphere, making it far less expensive than argon.
    3. Unlike carbon dioxide, nitrogen does not add the risk of adding carbonization to your wine. 

     

    A cost-effective alternative

    3 Reasons Why Nitrogen is the Inert Gas of Choice for Winemakers - Parker Winemaker Series Nitrogen Generator - Parker HannifinOn-site generation provides a reliable source of nitrogen at the lowest total cost available. Generating your own nitrogen eliminates the hassles of supplied cylinders, dewars or bulk nitrogen. A nitrogen generator, such as the Parker WineMaker series, produces 98 to 99.9 percent pure, dry nitrogen on-demand and dispels any concerns about lines icing up, running low, or running out of nitrogen. Features include:

    • Complete package with prefiltration, and receiving tank.
    • Digital Oxygen analyzer and Digital gas flow meter.
    • Plugs into 110 volt outlet.
    • Portable and expandable.
    • Lease to own options available.
    • Services wineries producing from 5,000 to 1 million+ cases.
    • Ensures minimal DO pickup.

     

    Easy installation and operation

    Installation is simple: pipe in compressed air and pipe out nitrogen. Just connect a standard compressed air line to the inlet of the generator, connect the outlet to your nitrogen line and the unit is ready for trouble-free operation. The system is designed to operate 24 hours/day, 7 days/week. There is no complicated operating procedure or labor-intensive monitoring involved. Simply select the purity your process requires and set the flow and
    within minutes, high purity, dry nitrogen is available. Once the nitrogen generator is installed, the system requires very little maintenance.

     

    Check out our infographic 3 Reasons Why Nitrogen is the Best Inert Gas Choice -Balston Winemaker - Gas Generator - Parker Hannifin

     

    From Amarone to Zinfandel, Parker provides solutions for every variety of winemaking, and for the key stages in the production, storage and bottling process. We partner with food and beverage customers around the world, sharing expertise and know-how to develop new, better and more productive ways of making wine. 

    Connect with us to learn more about on-stie nitrogen generation for your winery.

     

    This post was contributed by the Filtration Technology Team, Industrial Gas Filtration and Generation Division

     

    Helpful related articles

    Defining Our Unique Contribution to the World

    Argon or Nitrogen. Which is Best for Your Application?

    Why Nitrogen Is Better than Argon for Wine Production

    Nitrogen Gas Generators Save Winemakers Time and Money

    Vineyard Selects Nitrogen Gas Generator for Return on Investment and Ease of Use

    • 10 Jun 2021
    3 Reasons Why Nitrogen is the Inert Gas of Choice for Winemakers
    The global wine market has never been more competitive, and customer expectations have never been higher. Facing a world...