Latest Blog Posts
  •  In this post, you will learn how to change the transmission fluid (HT-1000) in Parker's HTG hydrostatic transmission in your mower. The HT-1000 Service Kit includes all the replacement parts needed for a smooth fluid change.

    The transmission fluid in your mower should be changed at regular intervals to maintain the life of the mower. The HT-1000 transmission fluid only needs to be changed once every 1000 hours, as opposed to as early as 500 hours with other brands. Our Hydrostatic Transmission Fluid HT-1000™ is a synthetic transmission oil engineered to provide maximum durability and long life for heavy-duty hydrostatic drive systems.

     

    Making oil changes simple and efficient

    Our transmissions for off-road vehicles are designed to make oil changes very quick and simple, and the new service kit makes the process even easier by providing all the necessary oil change components. Contact your local dealer for more information!

    Each transmission includes a low-speed, high torque motor (Torqmotor) integrated with a hydraulic pump to provide an all-in-one transmission package. the transmissions are ideal for zero-turn mowers, golf course maintenance equipment, and light-duty utility vehicles. 

    Each HTG service kit includes:

    • (2) gallons of HT-1000

    • (2) replacement filters

    • (2) plugs w/ washers

     

    Watch how to change your transmission oil in this video:

     

     

    How to Change Your HT-1000 Using a Parker Hydrostatic Transmission Service Kit step-by-step:

    1) Remove Plug from the Transmission Bottom Cover

     

          2) Remove Vent Plug from the Top of Transmission

     

    3) Remove Filter from Transmission

     

       4) After Oil is Drained, Insert New Filter

     

       5) Install New Transmission Plugs

     

        6) Lower the Mower

     

        7) Raise the Seat

     

     8) Remove Expansion Tank Cap

     

      9) Add HT-1000 Fluid to Tank

     

    10) Re-install Cap and the Vent Plug

     

    11) Close the Seat

     

    That's it! After completing these simple steps, you will have successfully changed your HT-1000 transmission fluid.

    Our Pump & Motor Division (PMD) is a market leader in gear pump and low speed-high torque gerotor motors. PMD continues to blaze a trail by developing new technologies while maintaining a high level of service synonymous with Parker. Between the two divisions in North Carolina and Tennessee, the PMD team members have decades of industry experience to better serve you and your application. 

     

    Article contributed by CT Lefler, marketing product manager, Parker Hydraulics Pump and Motor DivisionArticle contributed by CT Lefler, marketing product manager, Pump, and Motor Division.

     

     

     

     

     

    Related, helpful content for you:

    Defining Parker's Purpose

    How to Change the Transmission Fluid in Your Light-Duty and Medium-Duty Transmissions

    Integrated Transmissions That are a Cut Above

    Hydrostatic Transmission Fluid Engineered for Low Maintenance

    How to Change Your Engine and Machine Oil Faster, Cleaner and Safer

    Orbital Motors Boost Efficiency Across Ag and Construction Markets

    • 8 Sep 2021
    How to Change the Transmission Fluid in your Heavy-Duty Transmissions
    In this post, you will learn how to change the transmission fluid (HT-1000) in Parker's HTG hydrostatic transmission in...
  •  This article will teach you to how to change the transmission fluid (HT-1000) in the Parker HTE and HTJ hydrostatic transmissions on your mower. The HT-1000 Service Kit includes all the replacement parts needed for a smooth fluid change.

    The transmission fluid in a mower should be changed at regular intervals to maintain the life of the mower. Parker’s HT-1000 only needs to be changed once every 1000 hours, as opposed to as early as 500 hours with other brands. Parker’s Hydrostatic Transmission Fluid HT-1000™ is a synthetic transmission oil engineered to provide maximum durability and long life for heavy-duty hydrostatic drive systems.

     

    Meet the quick and simple oil change

    Parker’s transmissions are designed to make oil changes very quick and simple, and the new Service Kit makes the process even easier by providing all the necessary oil change components. Contact your local dealer for more information.

    Each transmission includes a low-speed, high torque motor (Torqmotor) integrated with a hydraulic pump to provide an all-in-one transmission package. The transmissions are ideal for zero-turn mowers, golf course maintenance equipment, and light-duty utility vehicles. 

    Each HTE/HTJ Service Kit includes:

    • (1) gallon of HT-1000,
    • (2) replacement filters, and
    • (4) magnetic plugs.

     

    Watch how to change your oil:

     

    How to change your HT-1000 fluid using a Hydrostatic Transmission Service Kit - step by step:

    1) Remove Filter Cap

     

    2) Twist off Breather Cap / Dipstick

         

    3) Remove Magnetic Plugs

     

     4) Remove Filter Plug and Allow Oil to Drain

     

    5) Install New Magnetic Plugs

     

    6)  Install New Filter

     

    7) Re-install Filter Plug

     

    8) Lower Mower and Raise Seat

     

    9) Locate Tank and Insert Funnel

     

    10) Add HT-1000 to Tank

     

    11) Replace Breather Cap / Dipstick

     

    12) Raise Mower and Place on Supports

     

    13) Engage Wheels in Both Directions


    That's it! After completing these simple steps, you will have successfully changed your HT-1000 transmission fluid.

     

    Our Pump & Motor Division (PMD) is a market leader in gear pump and low speed-high torque gerotor motors. PMD continues to blaze a trail by developing new technologies while maintaining a high level of service synonymous with Parker. Between the two divisions in North Carolina and Tennessee, the PMD team members have decades of industry experience to better serve you and your application.

     


    CT Lefler, marketing product manager, Pump and Motor DivisionArticle contributed by CT Lefler, marketing product manager, Pump, and Motor Division.

     

     

     

     

     

    Related, helpful content for you:

    Defining Parker's Purpose

    Integrated Transmissions That are a Cut Above

    Hydrostatic Transmission Fluid Engineered for Low Maintenance

    How to Change Your Engine and Machine Oil Faster, Cleaner and Safer

    Hydraulic Pump and Motor Combination Packs Power on Rayco Stump Cutter

    Orbital Motors Boost Efficiency Across Ag and Construction Markets

    • 3 Sep 2021
    How to Change the Transmission Fluid in Your Light-Duty and Medium-Duty Transmissions
    This article will teach you to how to change the transmission fluid (HT-1000) in the Parker HTE and HTJ hydrostatic transmissions...
  • Parker Expands Its Hazardous Valve Range to Meet Oil and Gas Industry Needs - D1VW Oil and Gas - Parker HannifinIndustries operating in hazardous environments such as the oil and gas industry inherently depend on reliable products operating in critical settings, while requiring the need to maintain safety and strict compliance. Listening to the voice of the customer is crucial in the design of simple solutions to mitigate the trifecta related to the complexity of maintaining multiple part numbers, operating in multiple environments, all while maintaining multiple certifications. One such example comes from the team at Parker Hydraulic Valve Division. Over the years, the team’s design engineers have worked closely with these customers on the continual improvement of the product portfolio. The latest innovation is the new D1VW*ER (NFPA D03 / NG06 / CETOP 03) directional control valve. The team has focused on complexity reduction for its end-users while maintaining all the expected quality and performance Parker directional control valves have become known for.

     

    Versatile and flexible design
    Indexable solenoid connector

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - D1VW*ER animation - Parker HannifinWith three horizontal positions and a vertical option for wiring installation per solenoid, electrical connections have become more adaptable. This modularity allows end-users to have more standardization by carrying fewer overall part number combinations. Additionally, usage of expensive explosion-proof fittings can be reduced.  These adjustments can be made while still maintaining the tri-rated explosion-proof certifications. 

     

     

    Tri-rated hazardous location/explosion-proof certifications 

    The multi-ratings provide needed coverage and confidence in usage across the globe. These ratings include:

    • ATEX
    • CSA/UL
    • IECEx

     

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - D1VW*ER Compliance Certification - Parker Hannifin


    Expanded temperature range

    Based directly on customer feedback, temperature limits have been expanded to now carry an operating temperature range of 70 °C down to -54 °C.  

    The expanded versatility is another nod to global usage needs, particularly in extremely cold locations in the Oil & Gas industry. 


    Parker Tracking System (PTS) QR code 

    End-users now have instant access to both critical information and certifications, when scanning the laser-etched QR code. No longer will there be wasted time and headaches trying to find various needed documentation. For example, all ATEX, CSA/UL, and IECEx certs are accessible and maintained current.

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - Parker Tracking System - Parker Hannifin

     

    Additional attributes

    After further input from our customers and design engineering team, other attributes of the D1VW*ER include:

    • Available with 24 VDC and 120 VAC rectified coils.
    • Extended and covered manual overrides come standard.
    • Surge suppressor diode for 24 VDC coil comes standard.

    Target applications

    Although these valves can be used in countless hazardous environments, the design was heavily influenced by the needs of the Oil & Gas industry.  Some targeted focuses are shown in figure 1 (below). 
     

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - D1VW*ER Target Applications - Parker Hannifin


    The D1VW*ER expands the offerings of Parker HVD hazardous rated valves, which also include:

     

    To learn more about Parker's new line of directional control valves, watch this video:

     


     

    Offshore Technology Conference 2021

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - See Parker products at OTC 2021 - Parker HannifinSee the D1VW*ER directional control valve live and talk with our engineering experts at OTC 2021, booth #2302. 

     

     

     

     

     

    This post was contributed by: 

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - Mike Giammo - Parker HannifinMike Giammo, product sales manager, Parker Hydraulic Valve Division.

     

     

     

     

     

    Parker Expands Its Hazardous Valve Range To Meet Oil and Gas Industry Needs - Mitch Eichler - Parker HannifinMitch Eichler, business development manager, Parker Hydraulic Valve Division.

     

     

     

     

     

    Related, helpful content for you

    Defining Our Unique Contribution to the World

    Oil and Gas Industry Solutions

    How to Achieve Safe Motion Control in ATEX Environments

    Discover More About Explosion Proof EX Servo Motor Certifications

     

    New Simplified Directional Control Valves for Hazardous Environments - Follow us on LinkedIn - Parker HannifinFor the latest best practices, technology innovations and practical engineering advice, follow our Hydraulics Technology page.

     

    • 14 Aug 2021
    New Simplified Directional Control Valves for Hazardous Environments
    Industries operating in hazardous environments such as the oil and gas industry inherently depend on reliable products operating...
  • Electro-Hydraulic System is the Ideal Solution for Power Steering in Buses Bus Pump & Motor DivisionThough gas-powered, internal combustion engine driven vehicles have been the norm in the automotive industry for over 100 years, electrification is growing. The traditional engine design was efficient, reliable, and easy to use, but gasoline powered vehicles are loud, dirty, and harmful to the environment. Given these drawbacks, electric vehicles have started to gain market share in commercial and personal markets. Public transportation is moving toward electrification at a faster pace than other markets, spurred by the deployment of electric vehicles in China.

    Electrification brings new challenges

    When an electric motor is implemented, the noise created under the hood is significantly decreased. This is a huge benefit of electrically powered vehicles, but also causes noises from other systems to become noticeable. Power steering, A/C systems, and hydraulics introduce a new layer of sounds that can be annoying to drivers and riders.

    An innovative solution

    Parker’s Pump & Motor Division teamed with the Hydraulic Pump and Power Systems Division to create the Electro-Hydraulic Pump System, or eHPS. The eHPS combines the low noise performance of the PGP505H’s helicoidal design with the high performance of the GVM motor, creating a system that provides on-demand power steering, a simplified installation process, high efficiency, and quiet operation. Quiet and powerful, the eHPS is robust enough for most electric bus applications. Benefits of the eHPS include:

    • Motor, pump, tank, relief valve, filter, and inverter in one package
    • Efficiency of over 80%
    • Quiet operation of less than 57dBa
    • Built and assembled in USA

    xThe eHPS is ideal for buses and large commercial vehicles that require large amounts of hydraulic power for steering assistance, but also necessitate the quiet operation of an electric system. In addition, the eHPS has IP67 protection, is tested to SAE J1455 vehicle standards, and designed to ISO 16750 standards, making it ideal for replacement applications. Electrification is the future of the automotive industry, and public transit is leading the charge. Learn more about Parker’s innovative new product today.

    The Pump & Motor Division is a market leader in gear pump and low speed-high torque gerotor motors, that continues to blaze a trail in the industry by developing new technologies while maintaining the high level of service synonymous with Parker Hannifin. Between its two locations in North Carolina and Tennessee, the division employs decades of industry experience to better serve you and your application.

     

    Electro-Hydraulic System is the Ideal Solution for Power Steering in Buses CT Lefler Pump & Motor DivisionThis article was contributed by CT Lefler, marketing product manager (e-business), Pump & Motor Division, Parker Hannifin Corporation.

     

     

     

      Other related articles:

    Technology Trend - eSteering Enables Greener Buses and Coaches

    Global Vehicle Electric Motor Brings Efficiency and Reliability | Infographic

    New Motor and Generator Solution Supports Cleaner Vehicles of the Future

     

     

     

     

     

    • 28 May 2021
    Electro-Hydraulic System is the Ideal Solution for Power Steering in Buses
    Though gas-powered, internal combustion engine driven vehicles have been the norm in the automotive industry for over 100...
  • Learn How This Public Works Department Increased Productivity Excavator Cylinder DivisionPhil Meyer, operations manager of the Whitman County Public Works Department, in Washington State, is tireless in his search for the right tools to help his 42-person team maintain over 1,900 miles of roads and 360 bridges and large structures in Southeastern Washington. The department has a daunting workload and inclement weather that can border on the extreme, productivity, durability and versatility are critical requirements of the equipment used at Whitman County. Typical projects include ditching to maintain flow lines, culvert maintenance, placing rip-rap, brush removal, bridge demolition, gabion basket installation, sloping and more.

    Selecting the best equipment

    Meyer's search lead him to Parker, the manufacturer of the PowerTilt Tilting Coupler and PowerGrip Multi-Purpose Jaw Bucket. The construction equipment attachments were exactly what Meyer’s team needed to maintain the county road system by preventing, reducing or restoring the roadway infrastructure and for maintaining the stormwater runoff by providing proper drainage, preventing flooding and road damage. "We switched to PowerTilt from cylinder-style tilting buckets and couldn’t be happier. Our tilting buckets didn’t offer the rotation we needed and weren’t durable enough. PowerTilt provided us with greater angles of rotation and since all moving parts are fully enclosed — PowerTilt has been virtually maintenance free," states Dave Stine, Whitman County equipment operator.

    Benefits with a wide variety of maintenance projects

    Learn How This Public Works Department Increased Productivity Powertilt PowerGripCylinder Division The seven PowerTilts and their PowerGrip have been important assets for the Whitman County Public Works department. With PowerTilt and PowerGrip, the department accomplishes most tasks 25 to 50 percent faster. The Whitman County Public Works department has even recommended PowerTilt and PowerGrip to other local agencies such as the Washington State Department of Transportation and the North Latah County Highway Department in Idaho.

    The Whitman County Public Works team explained that PowerTilt is extremely effective for shoulder maintenance tasks. Great care is required when ditching and sloping next to fragile habitats and consideration must be paid to the most effective water runoff target zones. The main objective is to provide shoulder stability by creating a smooth transition from roadway surface to shoulder. By utilizing PowerTilt, with 180-degree of smooth rotation, the equipment operator can work primarily from the road surface, diminishing the impact on sensitive roadside vegetation and habitats meanwhile producing the clean “V” shaped ditches the department requires.

    When working on a culvert project, PowerTilt virtually eliminates the need for back-breaking manual labor. The PowerTilt is used to angle the bucket to dig around both sides of the pipe. Once the soil is loosened around the pipe, the equipment operator can hook the end of the pipe and lift it right out. With the utilization of a PowerTilt, labor intensive, time-consuming digging by hand is eliminated.  Often, using the attachments, most tasks can be accomplished by an equipment operator and a truck driver resulting in efficient utilization of resources.

    PowerGrip has proven very helpful in placing rip-rap around bridges as well as for removing the old wooden pilings. PowerGrip has also made life easier when it comes to removing brush and trees from the roadside and right-of-ways. The multi-purpose tool eliminates the need to switch attachments between tasks.

    The rotary actuator technology

    Learn How This Public Works Department Increased Productivity rotary actuator Cylinder DivisionPowerTilt uses Parker’s innovative sliding-spline operating technology to convert linear piston motion into powerful shaft rotation. Each actuator is composed of a housing and two moving parts — the central shaft and piston. As hydraulic pressure is applied, the piston is displaced axially, while the helical gearing on the piston outer diameter and housing’s ring gear cause the simultaneous rotation of the piston. PowerTilt's end caps, seals and bearings all work in tandem to keep debris and other contaminants out of the inner workings of the actuator.

    Engineered for Durability and Performance

    Learn How This Public Works Department Increased Productivity Powertilt Cylinder DivisionOver a decade of research, innovation and engineering has gone into making the PowerTilt and PowerGrip attachments integral solutions for work site efficiency. PowerTilt’s robust design has allowed Whitman County Public Works to keep a PowerTilt on their machine 100 percent of the time, year-round.  

    PowerTilt is available for equipment up to 75,000 pounds in eight sizes with standard rotation of up to 180 degrees. Each model is designed for a specific class of machinery and individually customized to fit the carrier. PowerGrip buckets are available for equipment up to 20 tons, in three sizes, with bucket width ranges from 24 inches to 48 inches in the trenching profiles and 48 inches or 60 inches in the ditching profiles.

    Within the construction industry, PowerTilt and PowerGrip have built a reputation for their versatility, durability and efficiency – learn more today http://solutions.parker.com/powertilt

     

    Learn How This Public Works Department Increased Productivity Jessica Howisey CYLLearn How This Public Works Department Increased Productivity - Dan Morgado - Parker Cylinder DivisionThis article was contributed by Jessica Howisey, marketing communications manager and Daniel Morgado, applications engineer, Helac Business Unit, Cylinder Division.

     

     

     

     

    Related articles:

    PowerTilt Reduces Manual Labor, Lowers Costs and Increases Operator Safety

    Unique Tilting Coupler Technology Gives Construction Firm Competitive Edge

    Productivity Improved with Multi-Purpose Jaw Bucket

    Highway Department Benefits From PowerTilt and PowerGrip In Idaho

    • 20 May 2021
    Learn How This Public Works Department Increased Productivity
    Phil Meyer, operations manager of the Whitman County Public Works Department, in Washington State, is tireless in his search...
  • Hydrostatic Pumps and MotorsGold Cup Heavy-Duty Pumps and Motors have long been respected in the industry for technical excellence in hydrostatic transmission applications in marine, drilling and shredding applications, among others.

    You are also probably aware that the heavy-duty Gold Cup series of pumps and motors represent Parker's and Denison's combined expertise in hydrostatic transmission applications.

    Their tried and true design incorporates features such as, integral servo and replenishing pump, hot oil shuttle, and a unique servo control system; all of which combine to provide a rugged self-contained package that can withstand the harshest of conditions and continue to perform with trouble free long life.

    But you may not be aware of Gold Cup's, heavy-duty hydrostatic piston pump and motor value-added features and benefits listed below: 

    • Precise, tight control only results in a 4-5% change in control between motoring and pumping, versus the typical competitor product change of 10%. 
    • Displacement control response can ramp up from 0 to 695 hp in 300 ms. 
    • Automated brake and bypass control provides smoother stop and start transitions, reducing the operator burden. 
    • Pressure compensator response reduces heat and results in an 80% reduction in system shock.
    • 70% longer life than a typical hydrostatic pump. Since Gold Cup's inception over 50 years ago, these first generation pumps and motors are still in use. 
    • Numerous certifications and qualifications ranging from military grade to ATEX.

    For more details, check out Parker's Hydraulic Pump and Power System's You Probably Didn't Know About Gold Cup infographic.  

    Hydrostatic Pumps and Motors

          Related Links

    Hydraulic Pumps on the Krumbuster Help Revolutionize Crumb Rubber Production

    High Performance Hydraulic Pumps and Motors Expand Production in Lumber Mill

    Infographic: 5 Benefits of Smart Technology in Extreme Duty Hydrostatic Pumps



     

    • 17 May 2021
    6 Things You Never Knew About Heavy Duty Hydrostatic Piston Pumps and Motors
    Gold Cup Heavy-Duty Pumps and Motors have long been respected in the industry for technical excellence in hydrostatic transmission...
  • How Different Maintenance Strategies Can Affect the Lifespan of Power Plant Parts - Avoid Unplanned Maintenance - Hydraulic Valve DivisionThere's more than one way to maintain an asset. Power plant and maintenance managers implement various strategies to prepare for and respond to maintenance issues. While there isn't just one correct way to maintain your machines, each solution offers its advantages and disadvantages.

    Selecting your power plant system's optimum maintenance strategy can be the difference between significant downtime and smooth operation to prevent unplanned outages. Note that the best approach for some machines will be different than others. Here are the three most popular and effective strategies that power plant leaders use to maintain their equipment on the plant floor. 
     

    Corrective maintenance

    Often referred to as "crisis management," this type of maintenance is designed to respond to power plant equipment issues. With this kind of maintenance, repairs are completed when there is a noticeable problem with functionality or condition. For example, if a combustion turbine valve is leaking, maintenance leaders should plan an immediate repair to limit downtime. The complication with this "run-to-failure" approach is the higher probability of unplanned maintenance activities and shutdowns. This type of maintenance also encourages high replacement-part inventories, so power plants that utilize corrective maintenance need to have a high volume of spare parts. While this may not seem like the most efficient strategy, it can still be the most effective type of maintenance for specific components. 

    But what does this strategy mean for the lifespan of power plant parts? Unplanned maintenance repairs are a result of parts that have gone through wear and tear. A corrective approach could be disastrous for a power plant if backup parts are not available. However, with the proper preparation, it's possible to have a seamless transition and avoid costly downtime. 

    No matter what maintenance strategy your plant utilizes, having instant access to replacement parts is essential to limit downtime. Parker's Valve Service program aims to replace and refurbish aging fuel and water control valves on 7E and 7F turbines. Due to the many years of service that these valves have seen, wear and corrosion may be reducing their effectiveness.
     

    Preventive maintenance

    This time-based maintenance is the shift from unplanned to planned maintenance activities. While corrective maintenance is based on a reactive approach, preventive maintenance takes on a more proactive approach. Scheduled maintenance inspections are intended to reduce or eliminate machine failures on the plant floor. How Different Maintenance Strategies Can Affect the Lifespan of Power Plant Parts - Preventative Maintenance Benefits - Hydraulic Valve DivisionDepending on the frequency of the planned inspections, routine maintenance can cut downtime and lessen the severity of unplanned outages. 

    Plants that utilize a preventative maintenance strategy are well prepared; however, it could result in unnecessary downtime. If machines and equipment are running efficiently, unneeded inspections can disrupt a plant's production flow. Lost uptime and revenue can be enough reason to use a different maintenance approach. 

    The bright side to a preventive maintenance approach is fewer unplanned outages, which can result in less wear and tear on an asset. However, it’s important to realize that equipment can still malfunction between scheduled repairs, so it’s still safe to stock up on your parts inventory. 
     

    Predictive maintenance

    Predictive maintenance, also known as condition-based maintenance, is the most technologically advanced form of maintenance that replaces arbitrary inspection check-ups. Instead of planning inspections when your equipment is functioning at peak performance, predictive maintenance allows your machines to alert you when repairs are needed. Typically, this would be done by monitoring system parameters like pressure, flow rate, or temperature to look for changes over time that may indicate that a component is nearing end of life or needs repair.  

    Operating costs for this type of maintenance can be expensive due to the instrumentation required to study the system, but it is likely more than offset by reducing unwarranted scheduled inspections and unplanned machine failures. However, predictive maintenance is not always worth the investment depending on the machine or equipment. 

    This form of maintenance can be great for the longevity of machine parts, as the reduction of failures cuts down on repairs.
     

    Preparing for planned outages

    Whether planned or unplanned, outages can impact any plant. Due to the unpredictability of an unplanned outage, the proper preparation isn't often implemented. So, when a seasonal planned outage occurs, it's essential to make sure your team is ready. But how do you prepare for an outage, and what should you be thinking about?

    • Review reports for prior outages
      Looking at past reports is the first thing to do when preparing for a planned outage. The purpose of preparation is to reduce downtime and increase efficiency, so it's always a good idea to make contingency plans to learn from past issues. 

    • Perform a pre-outage data review
      It's important to evaluate your operations before the outage to see the success of your post-outage overhaul. This assessment will also help find any abnormalities that you should include in the full scope of your outage. Create an initial benchmark to compare to your post outage production. 

    • Make sure your facility is properly equipped
      After performing an in-depth evaluation of your plant floor, you'll want to make sure you have your facility equipped in advance. When you don't have the right equipment during an outage, you expose yourself to costly delays or potential injuries from using the wrong equipment. Parker can help set your plant up with spare parts for any aging assets at risk for failure. 

    There are many more steps to take when preparing for a planned shutdown, so make sure you leave yourself enough time to plan. It is recommended that you begin your shutdown preparation 18-24 months prior to the scheduled shutdown. 
     

    How Parker can help

    Whether you are still preparing for the next planned outage or just operating your plant with one of the maintenance plans above, it is always a good idea to have spare parts on hand. And you can always rely on Parker to make that happen. For years, our goal has been to support power plants with technical and commercial information and to simplify the process of obtaining new products in the most efficient way possible. 

    Replace your 7How Different Maintenance Strategies Can Affect the Lifespan of Power Plant Part - 7E and 7F Turbine Valves - Hydraulic Valve DivisionIn order to address the potential issue at hand, it is important to identify the valves that need attention. These types of aging 7E and 7F turbine valves, which have been in service for 20-30 years, need an inspection. They include:

    • Gauge selector valves
    • Fuel isolation valves
    • Water staging/isolation valves
    • Fuel distribution valves
    • Air purge valves
    • Water proportioning check valves

     


    Click here to learn more and download the FREE Valve Resource Guide.

    Download the free Valve Resource Guide from Parker Hannifin

     

     

     

    How Different Maintenance Strategies Can Affect the Lifespan of Power Plant Parts Mitch Eichler, Applications Engineer, Hydraulic Valve Division,Article contributed by Mitch Eichler, Business Development Manager, Hydraulic Valve Division, Parker Hannifin

              Related articles:

    Time to Inspect and Service Your Combustion Turbine Valves

    Replace Turbine Valves to Prevent Unexpected Shutdowns on the Plant Floor

    Eliminate Maintenance Concerns on Gas Turbine Fuel Control Valve

    Reduced Maintenance for Dual Fuel Gas Turbines With New Check Valve Design

    Preventive Maintenance vs. Predictive Maintenance

    Get Started on a Best Practice Maintenance Strategy | Infographic

    • 14 May 2021
    How Maintenance Strategies Can Affect the Lifespan of Power Plant Parts
    There's more than one way to maintain an asset. Power plant and maintenance managers implement various strategies to prepare...
  • PowerGrip Helps to Restore Fragile Trout Stream Habitat in Wisconsin excavator Cylinder DivisionNearly every equipment operator has found themselves operating in muddy, mucky conditions whether working on ditches, drainage fields, ponds or other waterlogged environments. Experienced operators know how these harsh conditions can cause wear and tear on their excavator's attachments, shortening the life of their equipment and resulting in costly downtime. For the Wisconsin Department of Natural Resources (Wisconsin DNR), PowerGrip is just the tool to overcome these job site obstacles. PowerGrip, a versatile, durable multi-purpose bucket with enclosed rotary actuator hinge technology, consistently delivers outstanding performance without suffering the downtime and maintenance issues experienced with cylinder-style buckets.

    A safer, reliable and durable alternative

    Bill Ryan, operations team supervisor at the Wisconsin DNR, has witnessed the durability and reliability of PowerGrip in the field. His skilled team restores miles of fragile trout stream habitat in Wisconsin, which involves bringing back the natural features of the stream that is critical to trout viability such as riffles, pools, meanders and woody debris. The habitat around the stream also must be restored often requiring difficult bank sloping and vegetation removal and replacement. Over a year ago, Wisconsin DNR replaced a cylinder-style jaw bucket on their CAT 320C with a PowerGrip to alleviate the service and maintenance issues they were previously having with the cylinder-style jaw bucket. They also found PowerGrip to be a safer solution as there are fewer external moving parts that they need to contend with, resulting in greater productivity.

    "We replaced our cylinder-style jaw bucket with a PowerGrip and couldn’t be happier. Due to the enclosed actuator hinge mechanism, we haven’t had to do anything with it, except complete the tasks on hand. PowerGrip has proved to be safer, more reliable and is extremely durable,”

    Bill Ryan, operations team supervisor

    An innovative operation design solution

    PowerGrip Helps to Restore Fragile Trout Stream Habitat in Wisconsin PowerGrip CYLThe harsh conditions in and around the stream often wreak havoc on heavy equipment and attachments. PowerGrip is equipped with a durable, enclosed rotary actuator hinge that’s ideally suited for working in muddy, mucky conditions. With the rotary actuator hinge technology offering 120 degrees of jaw movement, there are no exposed cylinders and rods in the bucket shell or clam that can become polluted with debris, leading to attachment malfunctions. The rotating movement is generated by the massive rotating pivot point between the jaw and back of bucket with Parker’s Helac sliding spline operating technology, which converts linear piston motion into powerful shaft rotation. The end caps, seals and bearings work in unison to keep debris and contaminants out of the inner workings of the actuator, prolonging life and reducing required maintenance. High strength, abrasion resistant steel is used throughout for added durability. In over a year, Wisconsin DNR hasn’t had to do any maintenance to PowerGrip, allowing them to get more work done in less time.

    A versatile tool for multiple tasks

    When dealing with the various obstacles inherent in restoring a trout stream, sloping a ditch or building a retention pond, it is imperative to have an adaptable multi-purpose tool that can change jobs on the fly. PowerGrip has been engineered with the flexibility to function as a trenching, grading or clamshell bucket and for gripping and loading. The inherent flexibility of our actuators allows the Wisconsin DNR to keep PowerGrip on their machine 80 to 85 percent of the time, year-round. PowerGrip’s versatility allows operators to accomplish a wide variety of tasks without having to change machines or attachments. When selecting the PowerGrip, the Wisconsin DNR went with the PG-08 product model that’s available for 20-ton machines. PowerGrip buckets are available in three sizes with bucket width ranges from 24 to 48 inches in the trenching profiles and 48 or 60 inches in ditching profiles.

    Time is precious 

    Whether you are doing demolition work, road construction, pond building, site-preparation or restoring miles of trout stream; every second counts. Maximizing productivity can prove to be much more than an organizational objective towards profitability, in the case of restoring a fraye trout stream ecosystem - it can prove to be the difference between survival and extinction. PowerGrip increases the tasks a single machine can perform, reducing the number of dedicated-task machines needed on a job site. PowerGrip can do everything a thumb can do, and more.  And it’s ready-to-use, pin-on attachment that’s easier to install and operate.  There’s no welding, fabrication or in-field measurement needed to install or remove the attachment, saving you valuable time and money. 

    Learn more about PowerGrip and the wide range of models for excavators and backhoes up to 45,000 pounds by visiting www.parker.com/cylinder 

    PowerGrip Helps to Restore Fragile Trout Stream Habitat in Wisconsin- Jessica Howisey - Parker Cylinder DivisionPowerGrip Helps to Restore Fragile Trout Stream Habitat in Wisconsin - Dan Morgado - Parker Cylinder DivisionThis article was contributed by Jessica Howisey, marketing communications manager and Daniel Morgado, applications engineer, Helac Business Unit, Cylinder Division.

     

     

     

     

    Related articles:

    Productivity Improved with Multi-Purpose Jaw Bucket

    Landscape Design Made Easier with PowerTilt Tilting Coupler Attachment

    Unique Tilting Coupler Technology Gives Construction Firm Competitive Edge

     

    • 6 May 2021
    PowerGrip Helps to Restore Fragile Trout Stream Habitat in Wisconsin
    Nearly every equipment operator has found themselves operating in muddy, mucky conditions whether working on ditches, drainage...
  • Parker Piston Accumulator for Concentrated Solar Power (CSP) - group of pistonSolar power is the most plentiful source of energy on the planet. Light from the sun can be directly converted to electricity via photovoltaic (PV) cells or by using heliostats, which include mirrors or lenses, to concentrate sunlight to a central receiver that collects the solar energy and converts it to heat (concentrated solar power or CSP). According to the Solar Energy Technologies Office, the thermal energy generated can then be used as a power or heat source in many industrial applications including power generation, water desalination, chemical production, and enhanced oil recovery. Additionally, through the use of thermal storage, CSP technology can provide solar power-on-demand — addressing grid integration challenges caused by solar energy variability. Thermal solar fields and CSP installations require supplemental power to reposition arrays during high wind loads. 

    A parabolic trough system is a type of CSP technology that is comprised of large mirrors shaped like the letter U. These troughs track the sun during the day. The sun's heat is reflected and sent to a receiver tube that contains a heat-retaining fluid. Basically, this super hot liquid heats water in a heat exchanger and the water turns to steam. The steam is sent off to a steam turbine, and from there, a generator producing electricity. Ultimately recyclable, once the fluid transfers its heat, it's recycled and used over and over. A major benefit of a trough system is that the heated fluid can be stored and used, even on a cloudy day or after the sun has set.

    Piston Accumulator Reduces Load Demand on Concentrated Solar Power Parabolic Trough Plants  - Video Title - CSP VideoFrom towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video from the U.S. Department of Energy, Office of Energy  Efficiency & Renewable Energy explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. 

        Piston accumulators

    Piston Accumulator Reduces Load Demand on Concentrated Solar Power Parabolic Trough Plants - accumulator  group - Parker HannifinSome of the solar installations have an array of solar panels (PV), or parabolic mirrors (CSP) which will move as the sun arcs through the sky. The main goal here is to place the mirror or panel at the proper angle to the sun in order to capture the most energy. This movement may be affected by a hydraulic cylinder, electrohydraulic or all-electric actuator. 
     

    Hydraulic piston accumulators can be incorporated into solar tracking systems for several reasons:

    • To reduce load demand. The ability to store hydraulic fluid under pressure so that larger hydraulic pumps are not required (smaller pumps can gradually build pressure in the accumulators. If the accumulators were not present, the pumps would have to be sized to run any time array movement was needed and also be larger in size in order to accommodate any large array movements
    • Accumulators may be installed in order to provide emergency shutdown power. The arrays must have the ability to be stowed in a high wind situation. In the event of an electrical system failure, the accumulators could provide reserve power to move the arrays into a safe position. When used as an auxiliary energy source, an accumulator can reduce the hydraulic system requirements, and can be used as an energy storage link so energy can be reasonably distributed. 
    • May provide some cushioning or dampening of the array as they are exposed to high wind loads.

    For hydraulic actuators, a power source is needed, and an accumulator could be used in two applications within this hydraulic system:

    1.  As an emergency power source: If the hydraulic power unit(s) that control these actuators fail – either through a component failure or electrical power loss, an accumulator, with its stored hydraulic energy, can be used to move the array to a “safe / stowed” position. This safe position protects the array from high wind loads which could damage it.
    2. For power augmentation: It may be possible to design a hydraulic power unit with less flow capacity in order to save space, cost and/or electrical power requirements. In this instance, an accumulator would allow for the gradual accumulation of hydraulic power (both pressure and flow). This power reserve can then be tapped into when needed – providing a greater flow than what the small hydraulic power unit could produce by itself. An application of this would be for emergency stowing of a number of arrays
      How they work

    A piston accumulator is a kind of pressure containment vessel. Its function is to absorb hydraulic shock, eliminate pulsation and reduce noise. It can also have the function of energy storage, energy recovery and energy compensation for the system.

    The accumulator is comprised of a cylindrical barrel, a piston that travels along a guide rod within this barrel, and end caps with ports on either end of the cylinder – one port exposed to the hydraulic system, and the other port for an isolated, inert gas volume. Hydraulic pressure and oil volume enter into the accumulator on the system side of the piston. This pressure moves the piston within the cylinder barrel, compressing the gas that is on the opposite side of the piston. If hydraulic pressure is lost, as in the event of a hydraulic power unit failure, this highly compressed gas will expand, moving the piston and forcing the hydraulic fluid out of the accumulator into the hydraulic system. This stored energy/pressure can then be used to do work – move a cylinder or actuate a valve.

     

    Watch this video to learn more about a piston accumulator's operation

      Benefits

    When used as an auxiliary device of a hydraulic system, an accumulator offers

    • Economy
    • Safety
    • Energy savings, 
    • Reliability
    • Environmental protection

    When used as an auxiliary energy source that augments a hydraulic pump, an accumulator can reduce the pump capacity requirements and can be used as an energy storage link, allowing the stored energy to be quickly distributed. The loading mode and cycle frequency of an accumulator determine the relative longevity of an accumulator, with low cycles resulting in longer operational life. An accumulator plays an irreplaceable role in maintaining the normal operation of the hydraulic system, improving its dynamic quality, maintaining working stability, prolonging working life and reducing noise.

     

    Safety considerations

    An accumulator is one of the more dangerous parts of a hydraulic system, so special attention must be given to safety during operation. One of the first steps to safety in a hydraulic system is identifying the accumulator. It should be labeled with the part number, manufacturer, serial number, maximum pressure and pre-charge pressure -- a good rule of thumb is to always consult an expert when working with accumulators.

    Designed for use in critical hydraulic applications, Parker's SBA Series Accumulator Safety Blocks make it possible to protect, isolate, and discharge hydraulic accumulators from a single device. Each incorporates a shut-off, pressure limiting, and pressure release feature in one housing rated for working pressures to 350 bar. Modular in design, Parker's SBA line uses an integrated manifold approach to reduce plumbing and leak points. All safety blocks have 2 maintenance ports and can be used with bladder, piston, and diaphragm accumulators.

    The SBA Series accumulator safety blocks are designed for use in a wide variety of critical hydraulic applications to benefit end-users in several ways including:

    • Compliance (for systems where shut-off, pressure limiting, pressure release and measurement point functions are required on accumulators)
    • Fit (compact design makes them ideal for applications where space is limited)
    • Productivity and Uptime (blocks help speed-up maintenance procedures/reduce system downtime)


    Parker SBA Safety Blocks represent a single-unit solution for manufacturers tasked with European Pressure Equipment Directive (PED) 97/23/EC compliance. The directive states a safety device must be fitted to all accumulators to provide a shut-off facility, pressure limiting and pressure release function as well as measurement points. A CE-certified relief valve is also included on all units to satisfy PED compliance. New SBA Safety Blocks are suitable for use with all types of accumulators - bladder, piston and diaphragm. Their compact, multi-function design saves space and reduces connections.


    "In comparison with traditional safety systems, the new SBA Series makes it possible to protect, isolate and discharge a hydraulic accumulator from a single unit. Each SBA Safety Block incorporates a shut-off, pressure limiting and pressure release feature in a compact and robust housing rated for working pressures up to 350 bar. As leaks are also a safety concern in any hydraulic system, the integrated manifold approach of our product provides added value through the elimination of plumbing and leak points."

    Bryan McGehee, application engineer, Parker Hannifin Corporation, Global Accumulator Division
     

     

    Choosing an accumulator

    To ensure safe operation, when choosing an accumulator for a CSP application, it is important to consider the technical requirements and capabilities of the product, as well as the reputation of the supplier and support services they provide. Some key things to look for include:

    • Dependable performance for extended periods in harsh environments
    • Long service life
    • Low leakage
    • Regulatory certifications such as ASME, DNV, ABS, AS1210, SELO, CRN, NR-13, PED(CE), DOSH
    • Corrosion performance up to 720 hours

    Questions to ask a supplier include:

    • What type of after-sales service and support does the organization provide?
    • Is the product supported by professional engineers with expert product knowledge in accumulator technology and regulation?
    • Does the supplier offer preventive maintenance programs?
    • What are the lead times?

     

    Parker piston accumulators, for example, are an optimal choice when fluid energy storage, hydraulic shock adsorption, auxiliary power or supplemental pump flow is required. As the world’s leading manufacturer of hydraulic piston type accumulators, Parker has the ability to combine high volume production along with completely custom designs due to our extensive manufacturing capabilities. This allows us to manufacture the standard line of piston accumulators as well as create highly unique and custom piston accumulators for a wide variety of applications at competitive prices. 

    Features and benefits

    Heavy-duty service with high operating pressures up to 20,000 PSI

    • Lower gas permeation rate
    • Extremely high-flow rates
    • Unlimited compression ratio
    • Can be used with remote gas bottles
    • Gradual failure mode
    • Sensors can be fitted for performance monitoring
    • ASME, DNV, ABS, AS1210, SELO, CRN, NR-13, PED(CE), DOSH certified
    • Five standard seal options to handle a variety of fluids and temperatures
    • Technical and aftermarket support
    • Local design and engineering capability and support
    • Competitive price
    • 4-8 weeks delivery

     

    Noor Energy 1 uses Parker piston accumulators

    Piston Accumulator Reduces Load Demand on Concentrated Solar Power Parbolic Trough Plant - Trough Array - Parker HannifinA recent solar project highlights a few challenges faced by the use of CSP. 

    The Noor Energy 1, the 950MW CSP+PV solar power project in Dubai, now in Phase 4,  has broken a dozen world records in solar CSP history. It has three technologies to produce 950MW of clean energy —  600MW from three parabolic trough CSP plants, 100MW from a solar tower, and 250MW will be generated from photovoltaic panels.

    The initial 700MW CSP project will be completed by the end of 2022. The first parabolic trough CSP plant is planned to be operational on August 21, 2021, the central tower CSP plant finished on November 21, 2021, and the second and third parabolic trough plants to be completed by the end of 2022.

    8 of the world records for CSP industry made by Noor Energy 1

    • World largest single-site investment project in CSP based on IPP model—USD 4.4 billion (AED 15.78 billion)
    • World largest capacity of single CSP+PV project—950MW
    • World largest area of single CSP+PV project—44 square kilometers
    • World biggest quantity of molten salt used in single CSP project—550,000 tons
    • World tallest CSP tower—260m
    • World-leading tower wireless heliostat technology—70,000 heliostats
    • World largest trough in commercial CSP project—8.2m
    • Most competitive LCOE—USD 7.3 cents /kWh

     

    Piston Accumulator for Concentrated Solar Power Project Tracks the Sun

     

    Piston Accumulator for Concentrated Solar Power Parabolic Trough Plants - Spencer Sun, TSM Parker Hydraulic ChinaArticle contributed by Spencer Sun, territory sales manager, Industrial Hydraulic - North China, Parker Hannifin with support from the Global Energy Team. 

     

     

     

     

     

    Additional articles on Solar applications in Power Generation:

    Solution for Capturing Maximum Solar Energy Includes Helical Actuator

    How Renewable Energy Power Plants Can Increase Output and Decrease Costs

    Improve Solar Panel Maintenance and Condition Monitoring Efficiency

    IoT Solutions Reduce Time and Cost for Solar Panel Inspection

    Parker Solutions for Power Generation 

    Large Capacity Piston Accumulators Help Subsea Engineers Meet Extreme Demands

     

    • 22 Apr 2021
    Piston Accumulator Reduces Load Demand on CSP Parabolic Trough Plants
    Solar power is the most plentiful source of energy on the planet. Light from the sun can be directly converted to electricity...
  • Improving Lift Truck Safety One Component at a Time MSGThe lift truck industry is growing not only in volume, but in sophistication. Societal expectations for friendly interfaces, predictable performance, increased productivity, IoT connectivity and environmental safety are raising the bar on lift truck design. Forklift engineering and design teams are confronting a number of challenges that are rapidly transforming major industrial markets worldwide:

    • First and foremost, operational safety continues to be a principal focus, driving changes in ergonomics and machine design.
    • The need to control operational costs while addressing safety concerns has resulted in the rapid adoption of autonomous vehicles.
    • Burgeoning global trade is expanding the need to move freight as cost-efficiently as possible.
    • Emerging IoT applications are creating the expectation of user-friendly telematics and big data analytics to improve productivity.
    • The rapid growth of e-commerce businesses and an increase in governmental infrastructure investments are significant contributors to market growth.
    • Environmental mandates are encouraging manufacturers of larger forklifts to adopt electric machines to limit potentially hazardous emissions.
    • In markets such as port machinery, heightened environmental concerns are also driving a move toward alternative fuel technologies.

    Partnering with the right forklift component supplier can help lift truck engineering and design teams take advantage of these trends by providing innovative design concepts that can be customized to meet the characteristic profiles associated with each OEM’s brand. 

    Component Innovations

    Learn How Parker is Improving Lift Truck Safety One Component at a Time Parker product animationParker's forklift products and technologies provide next generation solutions, for example:

    Hose Design - An OEM’s initial investment in high-performance hosing is likely to significantly improve dealer, and ultimately customer, satisfaction.  A Parker hose using the highest quality of materials and manufactured to withstand the toughest of applications can best fulfill exacting performance requirements.  

    Display Modules - Parker's compact, easy-to-read, full-color touch screen displays, with graphical programming capabilities, support multiple languages and enable rapid application and customized menu screen development. The electronic displays are compatible with both CAN and USB
    communication protocols. Advanced systems can even feature NTSC.PAL video support to help keep your customers’ fleets moving when problems occur. 

    Gear pumpsSilent fixed-displacement gear pumps for applications demanding noise levels less than 65cb, where high power density is required

    ORFS Seal-Lok’s Trap-Seal™ technology was created to proactively protect against O-ring fallout and pinch. The trapezoidal-shaped seal sits snugly in Seal-Lok’s ORFS captive O-ring groove (CORG) ensuring improved retention and providing maximum assurance for leak-free connections.

    Parker would welcome an opportunity to become your engineering and technology partner - optimizing and scaling individual components to meet your specification requirements and ensuring predictable and consistent component performance worldwide.

     

    Improving Lift Truck Safety One Component at at Time MSGDownload our white paper, Improving Lift Truck Safety...One Component at a Time, to learn more about Parker's products and solutions for forklifts.

     

     

     

     

     

     

    This article was contributed by the Hydraulics Team.

     

    Related content: 

    Can the Right Hydraulic Hose Improve Workplace Safety

    Learn Why the Silent 500H Series Pump is Idea for Forklifts

    Forklift OEMs Prevent Warranty Claims with this Leak-Free Connection

    8 Simple Tips for Maintaining and Replacing Your Mast Hose

    Your Basic Guide to Parker Non-Spill Quick Couplings

    • 20 Apr 2021
    Learn How Parker is Improving Lift Truck Safety One Component at a Time
    The lift truck industry is growing not only in volume, but in sophistication. Societal expectations for friendly interfaces...